Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Surgery (orchiopexy) to retrieve the testes and position them in the scrotum is the primary treatment. Occasionally they are unsalvageable if located high in the retroperitoneum. During this surgery, the uterus is usually removed and attempts made to dissect away Müllerian tissue from the vas deferens and epididymis to improve the chance of fertility. If the person has male gender identity himself and the testes cannot be retrieved, testosterone replacement will be usually necessary at puberty should the affected individual choose to pursue medical attention. Lately, laparoscopic hysterectomy is offered to patients as a solution to both improve the chances of fertility and to prevent the occurrences of neoplastic tissue formation.
The primary management of cryptorchidism is watchful waiting, due to the high likelihood of self-resolution. Where this fails, a surgery, called orchiopexy, is effective if inguinal testes have not descended after 4–6 months. Surgery is often performed by a pediatric urologist or pediatric surgeon, but in many communities still by a general urologist or surgeon.
When the undescended testis is in the inguinal canal, hormonal therapy is sometimes attempted and very occasionally successful. The most commonly used hormone therapy is human chorionic gonadotropin (HCG). A series of hCG injections (10 injections over 5 weeks is common) is given and the status of the testis/testes is reassessed at the end. Although many trials have been published, the reported success rates range widely, from roughly 5 to 50%, probably reflecting the varying criteria for distinguishing retractile testes from low inguinal testes. Hormone treatment does have the occasional incidental benefits of allowing confirmation of Leydig cell responsiveness (proven by a rise of the testosterone by the end of the injections) or inducing additional growth of a small penis (via the testosterone rise). Some surgeons have reported facilitation of surgery, perhaps by enhancing the size, vascularity, or healing of the tissue. A newer hormonal intervention used in Europe is the use of GnRH analogs such as nafarelin or buserelin; the success rates and putative mechanism of action are similar to hCG, but some surgeons have combined the two treatments and reported higher descent rates. Limited evidence suggests that germ cell count is slightly better after hormone treatment; whether this translates into better sperm counts and fertility rates at maturity has not been established. The cost of either type of hormone treatment is less than that of surgery and the chance of complications at appropriate doses is minimal. Nevertheless, despite the potential advantages of a trial of hormonal therapy, many surgeons do not consider the success rates high enough to be worth the trouble since the surgery itself is usually simple and uncomplicated.
In cases where the testes are identified preoperatively in the inguinal canal, orchiopexy is often performed as an outpatient and has a very low complication rate. An incision is made over the inguinal canal. The testis with accompanying cord structure and blood supply is exposed, partially separated from the surrounding tissues ("mobilized"), and brought into the scrotum. It is sutured to the scrotal tissue or enclosed in a "subdartos pouch." The associated passage back into the inguinal canal, an inguinal hernia, is closed to prevent re-ascent.
In patients with intraabdominal maldescended testis, laparoscopy is useful to see for oneself the pelvic structures, position of the testis and decide upon surgery ( single or staged procedure ).
Surgery becomes more complicated if the blood supply is not ample and elastic enough to be stretched into the scrotum. In these cases, the supply may be divided, some vessels sacrificed with expectation of adequate collateral circulation. In the worst case, the testis must be "auto-transplanted" into the scrotum, with all connecting blood vessels cut and reconnected ("anastomosed").
When the testis is in the abdomen, the first stage of surgery is exploration to locate it, assess its viability, and determine the safest way to maintain or establish the blood supply. Multi-stage surgeries, or autotransplantation and anastomosis, are more often necessary in these situations. Just as often, intra-abdominal exploration discovers that the testis is non-existent ("vanished"), or dysplastic and not salvageable.
The principal major complication of all types of orchiopexy is a loss of the blood supply to the testis, resulting in loss of the testis due to ischemic atrophy or fibrosis.
Surgical intervention depends on the extent of the individual problem. With a didelphic uterus surgery is not usually recommended.
A uterine septum can be resected in a simple out-patient procedure that combines laparoscopy and hysteroscopy. This procedure greatly decreases the rate of miscarriage for women with this anomaly.
With prompt diagnosis and treatment the testicle can often be saved. Typically, when a torsion takes place, the surface of the testicle has rotated towards the midline of the body. Non-surgical correction can sometimes be accomplished by manually rotating the testicle in the opposite direction (i.e., outward, towards the thigh); if this is initially unsuccessful, a forced manual rotation in the other direction may correct the problem. The success rate of manual detorsion is not known with confidence.
Testicular torsion is a surgical emergency that requires immediate intervention to restore the flow of blood. If treated either manually or surgically within six hours, there is a high chance (approx. 90%) of saving the testicle. At 12 hours the rate decreases to 50%; at 24 hours it drops to 10%, and after 24 hours the ability to save the testicle approaches 0. About 40% of cases result in loss of the testicle. Common treatment for children is surgically sewing the testicle to the scrotum to prevent future recurrence (orchiopexy).
Most cases of vaginal hypoplasia associated with CAIS can be corrected using non-surgical pressure methods. The elastic nature of vaginal tissue, as demonstrated by its ability to accommodate the differences in size between a tampon, a penis, and a baby's head, make dilation possible even in cases when the vaginal depth is significantly compromised. Treatment compliance is thought to be critical to achieve satisfactory results. Dilation can also be achieved via the Vecchietti procedure, which stretches vaginal tissues into a functional vagina using a traction device that is anchored to the abdominal wall, subperitoneal sutures, and a mold that is placed against the vaginal dimple. Vaginal stretching occurs by increasing the tension on the sutures, which is performed daily. The non-operative pressure dilation method is currently recommended as the first choice, since it is non-invasive, and highly successful. Vaginal dilation should not be performed before puberty.
XX males are sterile due to low or no sperm content and there is currently no treatment to address this infertility. Genital ambiguities, while not necessary to treat for medical reasons, can be treated through the use of hormonal therapy, surgery, or both. Since XX male syndrome is variable in its presentation, the specifics of treatment varies widely as well. In some cases gonadal surgery can be performed to remove partial or whole female genitalia. This may be followed by plastic and reconstructive surgery to make the individual appear more externally male. Conversely, the individual may wish to become more feminine and feminizing genitoplasty can be performed to make the ambiguous genitalia appear more female. Hormonal therapy may also aid in making an individual appear more male or female.
Treatment usually involves plastic and reconstructive surgery. Surgery may be needed to correct undescended testes or hernias.
Some have hypothesized that supraphysiological levels of estrogen may reduce the diminished bone mineral density associated with CAIS. Data has been published that suggests affected women who were not compliant with estrogen replacement therapy, or who had a lapse in estrogen replacement, experienced a more significant loss of bone mineral density. Progestin replacement therapy is seldom initiated, due to the absence of a uterus. Androgen replacement has been reported to increase a sense of well-being in gonadectomized women with CAIS, although the mechanism by which this benefit is achieved is not well understood.
A problem for people with penile agenesis is the absence of a urinary outlet. Before genital metamorphosis, the urethra runs down the anal wall, to be pulled away by the genital tubercle during male development. Without male development this does not occur. The urethra can be surgically redirected to the rim of the anus immediately after birth to enable urination and avoid consequent internal irritation from urea concentrate. In such cases, the perineum may be left devoid of any genitalia, male or female.
A working penis transplant on to an agenetic patient has never been successful. Only one major penis graft was successfully completed. This occurred in China and the patient shortly rejected it on psychological grounds. However a full female or agenetic to male transplant is not yet facilitated to fulfil full reproductive functions.
On March 18, 2013, it was announced that Andrew Wardle, a British man born without a penis, was going to receive a pioneering surgery to create a penis for him. The surgeons hope to "fold a large flap of skin from his arm — complete with its blood vessels and nerves — into a tube to graft onto his pubic area." If the surgery goes well, the odds of starting a family are very good.
Congenital anomalies like cryptorchidism, renal agenesis/dysplasia, musculoskeletal and cardiopulmonary anomalies are also common (>50% cases), hence evaluation of the patient for internal anomalies is mandatory.
Although aphallia can occur in any body type, it is considered a substantially more troublesome problem with those who have testes present, and has in the past sometimes been considered justification for assigning and rearing a genetically male infant as a girl. After the theory in the 1950s that gender as a social construct was purely nurture and so an individual child could be raised early on and into one gender or the other regardless of their genetics or brain chemistry. Intersex people generally advocate harshly against coercive genital reassignment however, and encourage infants to be raised choosing their own gender identity. The nurture theory has been largely abandoned and cases of trying to rear children this way have not proven to be successful transitions.
In newborn period or infancy, feminizing operations are recommended for treatment of penile agenesis, but after 2 years, as sexual identification of the patients has appeared, it is advised to perform masculinizing operations in order not to disturb the child psychologically.
Recent advances in surgical phalloplasty techniques have provided additional options for those still interested in pursuing surgery.
Testosterone has been used to successfully treat undervirilization in some but not all men with PAIS, despite having supraphysiological levels of testosterone to start with. Treatment options include transdermal gels or patches, oral or injectable testosterone undecanoate, other injectable testosterone esters, testosterone pellets, or buccal testosterone systems. Supraphysiological doses may be required to achieve the desired physiological effect, which may be difficult to achieve using non-injectable testosterone preparations. Exogenous testosterone supplementation in unaffected men can produce various unwanted side effects, including prostatic hypertrophy, polycythemia, gynecomastia, hair loss, acne, and the suppression of the hypothalamic-pituitary-gonadal axis, resulting in the reduction of gonadotropins (i.e., luteinizing hormone and follicle-stimulating hormone) and spermatogenic defect. These effects may not manifest at all in men with AIS, or might only manifest at a much higher concentration of testosterone, depending on the degree of androgen insensitivity. Those undergoing high dose androgen therapy should be monitored for safety and efficacy of treatment, possibly including regular breast and prostate examinations. Some individuals with PAIS have a sufficiently high sperm count to father children; at least one case report has been published that describes fertile men who fit the criteria for grade 2 PAIS (micropenis, penile hypospadias, and gynecomastia). Several publications have indicated that testosterone treatment can correct low sperm counts in men with MAIS. At least one case report has been published that documents the efficacy of treating a low sperm-count with tamoxifen in an individual with PAIS.
Sertoli cell only syndrome is like other non-obstructive azoospermia (NOA) cases are managed by sperm retrieval through testicular sperm extraction (mTESE), micro-surgical testicular sperm extraction (mTESE), or testicular biopsy. On retrieval of viable sperm this could be used in Intracytoplasmic Sperm injection ICSI
In 1979, Levin described germinal cell aplasia with focal spermatogenesis where a variable percentage of seminiferous tubules contain germ cells. It is important to discriminate between both in view of ICSI.
A retrospective analysis performed in 2015 detailed the outcomes of N=148 men with non-obstructive azoospermia and diagnosed Sertoli cell-only syndrome:
- Men with SCOS: 148
- Testicular sperm was successfully retrieved: 35/148
- Successful ICSI: 20/148
- Clinical pregnancy: 4/148
This study considers the effect of FSH levels on clinical success, and it excludes abnormal karyotypes. All patients underwent MD-TESE in Iran. Ethnicity and genetic lineage may have an impact on treatment of azoospermia [citation needed].
Pre- and post-testicular azoospermia are frequently correctible, while testicular azoospermia is usually permanent. In the former the cause of the azoospermia needs to be considered and it opens up possibilities to manage this situation directly. Thus men with azoospermia due to hyperprolactinemia may resume sperm production after treatment of hyperprolactinemia or men whose sperm production is suppressed by exogenous androgens are expected to produce sperm after cessation of androgen intake. In situations where the testes are normal but unstimulated, gonadotropin therapy can be expected to induce sperm production.
A major advancement in recent years has been the introduction of IVF with ICSI which allows successful fertilization even with immature sperm or sperm obtained directly from testicular tissue. IVF-ICSI allows for pregnancy in couples where the man has irreversible testicular azoospermia as long as it is possible to recover sperm material from the testes. Thus men with non-mosaic Klinefelter's syndrome have fathered children using IVF-ICSI. Pregnancies have been achieved in situations where azoospermia was associated with cryptorchism and sperm where obtained by testicular sperm extraction (TESE).
In men with posttesticular azoospermia a number of approaches are available. For obstructive azoospermia IVF-ICSI or surgery can be used and individual factors need to be considered for the choice of treatment. Medication may be helpful for retrograde ejaculation.
Administration of luteinizing hormone (LH) (or human chorionic gonadotropin) and follicle-stimulating hormone (FSH) is very effective in the treatment of male infertility due to hypogonadotropic hypogonadism. Although controversial, off-label clomiphene citrate, an antiestrogen, may also be effective by elevating gonadotropin levels.
Though androgens are absolutely essential for spermatogenesis and therefore male fertility, exogenous testosterone therapy has been found to be ineffective in benefiting men with low sperm count. This is thought to be because very high local levels of testosterone in the testes (concentrations in the seminiferous tubules are 20- to 100-fold greater than circulating levels) are required to mediate spermatogenesis, and exogenous testosterone therapy (which is administered systemically) cannot achieve these required high local concentrations (at least not without extremely supraphysiological dosages). Moreover, exogenous androgen therapy can actually impair or abolish male fertility by suppressing gonadotropin secretion from the pituitary gland, as seen in users of androgens/anabolic steroids (who often have partially or completely suppressed sperm production). This is because suppression of gonadotropin levels results in decreased testicular androgen production (causing diminished local concentrations in the testes) and because FSH is independently critical for spermatogenesis. In contrast to FSH, LH has little role in male fertility outside of inducing gonadal testosterone production.
Estrogen, at some concentration, has been found to be essential for male fertility/spermatogenesis. However, estrogen levels that are too high can impair male fertility by suppressing gonadotropin secretion and thereby diminishing intratesticular androgen levels. As such, clomiphene citrate (an antiestrogen) and aromatase inhibitors such as testolactone or anastrozole have shown effectiveness in benefiting spermatogenesis.
Low-dose estrogen and testosterone combination therapy may improve sperm count and motility in some men, including in men with severe oligospermia.
Treatments vary according to the underlying disease and the degree of the impairment of the male fertility. Further, in an infertility situation, the fertility of the female needs to be considered.
Pre-testicular conditions can often be addressed by medical means or interventions.
Testicular-based male infertility tends to be resistant to medication. Usual approaches include using the sperm for intrauterine insemination (IUI), in vitro fertilization (IVF), or IVF with intracytoplasmatic sperm injection (ICSI). With IVF-ICSI even with a few sperm pregnancies can be achieved.
Obstructive causes of post-testicular infertility can be overcome with either surgery or IVF-ICSI. Ejaculatory factors may be treatable by medication, or by IUI therapy or IVF.
Vitamin E helps counter oxidative stress, which is associated with sperm DNA damage and reduced sperm motility. A hormone-antioxidant combination may improve sperm count and motility. However there is only some low quality evidence from few small studies that oral antioxidants given to males in couples undergoing in vitro fertilisation for male factor or unexplained subfertility result in higher live birth rate. It is unclear if there are any adverse effects.
Genitoplasty, unlike gender assignment, can be irreversible, and there is no guarantee that adult gender identity will develop as assigned despite surgical intervention. Some aspects of genitoplasty are still being debated; a variety of different opinions have been presented by professionals, self-help groups, and patients over the last few decades. Points of consideration include what conditions justify genitoplasty, the extent and type of genitoplasty that should be employed, when genitoplasty should be performed, and what the goals of genitoplasty should be. Gender assignment itself does not predicate the need for immediate genitoplasty; in some cases, surgical intervention can be delayed to allow the affected child to reach an age and maturity sufficient to have a role in such decisions. Some studies suggest that early surgeries can still produce satisfactory outcomes, while others suggest it to be unlikely. Even surgeries that are planned as one-stage procedures often require further major surgery. Scarring and tissue loss that result from repeated surgical procedures are of particular concern, due to the presumed negative impact on sexual function.
While it is thought that feminizing genitoplasty typically requires fewer surgeries to achieve an acceptable result and results in fewer urologic difficulties, there is no evidence that feminizing surgery results in a better psychosocial outcome. In one study, individuals with grade 3 PAIS who were raised male rated their body image and sexual function similarly to those who were raised female, even though they were more likely to have genitalia that were abnormal in size and appearance; more than half of the male participants had a stretched penile length that was below 2.5 standard deviations of the mean, while only 6% of female participants presented with a short vagina in adulthood, and participating physicians gave a lower cosmetic rating to the surgical results of the men than the women. Both male and female participants cited the appearance of their genitalia as being the greatest contributing factor to their dissatisfaction with their body image. In two larger studies, the common predictor of gender reassignment was stigmatization related to having an intersex condition.
The outcome of masculinizing genitoplasty is dependent on the amount of erectile tissue and the extent of hypospadias. Procedures include correction of penile curvature and chordee, reconstruction of the urethra, hypospadias correction, orchidopexy, and Müllerian remnant removal to prevent infection and pseudo-incontinence. Erectile prosthesis may be inserted in cases of successful neophalloplasty in adulthood, although it has a high morbidity. Additional surgeries may be required to correct postsurgical complications such as stenosis of the anastomosis between the native urethra and the graft, urethral fistulas, and posterior displacement of the balanic meatus. Successful masculinizing genitoplasty performed on individuals with grade 3 PAIS often requires multiple surgeries.
If feminizing genitoplasty is performed in infancy, the result will need to be refined at puberty through additional surgery. Procedures include clitoral reduction / recession, labiaplasty, repair of the common urogenital sinus, vaginoplasty, and vaginal dilation through non-surgical pressure methods. Clitoral reduction / recession surgery carries with it the risk of necrosis as well as the risk of impairing the sexual function of the genitalia, and thus should not be performed for less severe clitoromegaly. Clitoral surgery should be focused on function rather than appearance, with care being taken to spare the erectile function and innervation of the clitoris. If PAIS presents with a common urogenital sinus, the American Academy of Pediatrics currently recommends that surgery to separate the urethra from the vagina be performed at an early age. As is the case for CAIS, vaginal dilation using pressure dilation methods should be attempted before the surgical creation of a neovagina is considered, and neither should be performed before puberty. Complications of feminizing genitoplasty can include vaginal stenosis, meatal stenosis, vaginourethral fistula, female hypospadias, urinary tract injuries, and recurrent clitoromegaly. Successful feminizing genitoplasty performed on individuals with grade 3 PAIS often requires multiple surgeries, although more surgeries are typically required for successful masculinizing genitoplasty in this population.
Many surgical procedures have been developed to create a neovagina, as none of them is ideal. Surgical intervention should be considered only after non-surgical pressure dilation methods have failed to produce a satisfactory result. Neovaginoplasty can be performed using skin grafts, a segment of bowel, ileum, peritoneum, , buccal mucosa, amnion, or dura mater. Success of such methods should be determined by sexual function, and not by vaginal length alone, as has been done in the past. Ileal or cecal segments may be problematic because of a shorter mesentery, which may produce tension on the neovagina, leading to stenosis. The sigmoid neovagina is thought to be self-lubricating, without the excess mucus production associated with segments of small bowel. Vaginoplasty may create scarring at the introitus (the vaginal opening), requiring additional surgery to correct. Vaginal dilators are required postoperatively to prevent vaginal stenosis from scarring. Other complications include bladder and bowel injuries. Yearly exams are required, as neovaginoplasty carries a risk of carcinoma, although carcinoma of the neovagina is uncommon. Neither neovaginoplasty nor vaginal dilation should be performed before puberty.
Patients with a unicornuate uterus may need special attention during pregnancy as pregnancy loss, fetal demise, premature birth, and malpresentation are more common. It is unproven that cerclage procedures are helpful.
A pregnancy in a rudimentary horn cannot be saved and needs to be removed with the horn to prevent a potentially fatal rupture of the horn and uterus.
Although it is unclear whether interventions before conception or early in pregnancy such as resection of the rudimentary horn and prophylactic cervical cerclage decidedly improve obstetrical outcomes, current practice suggests that such interventions may be helpful.
When an infant is born with PSH, the most difficult management decision has often been the sex assignment, since genitalia with this degree of ambiguity do not resemble either sex very well with respect to looks or function. Many infants with PPHS have been assigned and raised as female despite presence of testes and XY chromosomes.
Nearly all parents of infants with PPSH are offered surgical reconstruction, to either further masculinize or feminize the external genitalia.
Treatment with testosterone postnatally does not close the urethra or change the malformation, but in some cases may enlarge the penis slightly.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
In most cases where orchitis is caused by epididymitis, treatment is an oral antibiotic such as cefalexin or ciprofloxacin until infection clears up. In both causes non-steroidal anti-inflammatory drugs such as naproxen or ibuprofen are recommended to relieve pain. Sometimes stronger pain medications in the opiate category are called for and are frequently prescribed by experienced emergency room physicians.
Upon diagnosis, estrogen and progesterone therapy is typically commenced, promoting the development of female characteristics.
The consequences of streak gonads to a person with Swyer syndrome:
1. Gonads cannot make estrogen, so the breasts will not develop and the uterus will not grow and menstruate until estrogen is administered. This is often given transdermally.
2. Gonads cannot make progesterone, so menstrual periods will not be predictable until progestin is administered, usually as a pill.
3. Gonads cannot produce eggs so conceiving children naturally is not possible. A woman with a uterus and ovaries but without female gamete is able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
4. Streak gonads with Y chromosome-containing cells have a high likelihood of developing cancer, especially gonadoblastoma. Streak gonads are usually removed within a year or so of diagnosis since the cancer can begin during infancy.
Surgery is sometimes performed to alter the appearance of the genitals. However many surgeries performed on intersex people lack clear evidence of necessity, can be considered as mutilating, and are widely considered to be human rights violations when performed without the informed consent of the recipient.
Treatment takes place within the context of infertility management and needs also to consider the fecundity of the female partner. Thus the choices can be complex.
In a number of situations direct medical or surgical intervention can improve the sperm concentration, examples are use of FSH in men with pituitary hypogonadism, antibiotics in case of infections, or operative corrections of a hydrocele, varicocele, or vas deferens obstruction.
In most cases of oligospermia including its idiopathic form there is no direct medical or surgical intervention agreed to be effective. Empirically many medical approaches have been tried including clomiphene citrate, tamoxifen, HMG, FSH, HCG, testosterone, Vitamin E, Vitamin C, anti-oxidants, carnitine, acetyl-L-carnitine, zinc, high-protein diets. In a number of pilot studies some positive results have been obtained. Clomiphene citrate has been used with modest success. The combination of tamoxifen plus testosterone was reported to improve the sperm situation.
The use of carnitine showed some promise in a controlled trial in selected cases of male infertility improving sperm quality and further studies are needed.
In many situations, intrauterine inseminations are performed with success. In more severe cases IVF, or IVF - ICSI is done and is often the best option, specifically if time is a factor or fertility problems coexist on the female side.
The Low dose Estrogen Testosterone Combination Therapy may improve sperm count and motility in some men including severe oligospermia.
The aim for hormone replacement therapy (HRT) for both men and women is to ensure that the level of circulating hormones (testosterone for men and oestrogen/progesterone for women) is at the normal physiological level for the age of the patient. At first the treatment will produce most of the physical and psychological changes seen at puberty, with the major exception that there will be no testicular development in men and no ovulation in women.
After the optimum physical development has been reached HRT for men will continue to ensure that the normal androgen function is maintained; such as libido, muscle development, energy levels, hair growth, and sexual function. In women, a variety of types of HRT will either give a menstruation cycle or not as preferred by the patient. HRT is very important in both men and women to maintain bone density and to reduce the risk of early onset osteoporosis.
The fertility treatments used for both men and women would still include hormone replacement in their action.
There are a range of different preparations available for HRT for both men and women; a lot of these, especially those for women are the same used for standard HRT protocols used when hormone levels fall in later life or after the menopause.
For males with KS / CHH the types of delivery method available include daily patches, daily gel use, daily capsules, sub cutaneous or intramuscular injections or six monthly implants. Different formulations of testosterone are used to ensure both the anabolic and androgenic effects of testosterone are achieved.
Testosterone undecanoate is commonly used worldwide, though less so in the US, for treating male KS / CHH patients and has proved to be effective in maintaining good testosterone levels with an increased injection period of up to 12 weeks.
The precise treatment method used and interval between injections will vary from patient to patient and may need to be adjusted to maintain a physiological normal level of testosterone over a longer period of time to prevent the mood swings or adverse effects that can occur if testosterone levels are too high or low. Some treatments may work better with some patients than others so it might be a case of personal choice as which one to use.
As an alternative human chorionic gonadotrophin (hCG) can also be used to stimulate natural testosterone production. It acts in the same way as LH; stimulating the Leydig cells in the testes to produce testosterone. hCG can be used as pre-cursor to male fertility treatments but it can be used in isolation just for testosterone production.
There are no specialist HRT treatments available just for women with KS/HH but there are multitude of different HRT products on the market including oral contraceptives and standard post-menopause products. Pills are popular but patches are also available. It may take some trial and error to find the appropriate HRT for the patient depending on how her body reacts to the particular HRT. Specialist medical advice will be required to ensure the correct levels of oestrogen and progesterone are maintained each month, depending on whether the patient requires continuous HRT (no-bleed) or a withdrawal option to create a "menstrual" type bleed. This withdrawal bleed can be monthly or over longer time periods depending on the type of medication used.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.