Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment with either glucocorticoids, methotrexate, anakinra, or tocilizumab has been examined. Anakinra has been shown to resolve the clinical features of the disease in 87% of patients. It also induces remission in half of corticosteroid-resistant patients. The results of another study were similar, with half of the patients responding to treatment with Anakinra. Canakinumab, an antibody to
interleukin-1 beta, is indicated for treatment in patients who respond poorly to other treatments.
The treatment of juvenile arthritis includes medications, physical therapy, splints and in severe cases surgery. These treatments are focused on reducing swelling, relieving pain and maintaining full movement of joints. Children are encouraged to be involved in extra-curricular activities, physical activity when possible, and to live a "normal" life.
Once a diagnosis of JDMS is made, the treatment is often a 3-day course of Intravenous ("pulse") steroids (methylprednisolone, Solu-Medrol), followed by a high dose of oral prednisone (usually 1–2 mg/kg of body weight) for several weeks. This action usually brings the disease under control, lowering most lab tests to or near normal values. Some minor improvement in muscle symptoms may also be seen in this time, but normally it takes a long time for full muscle strength to be regained.
Once the disease process is under control, oral steroids are tapered gradually to minimize their side effects. Often, steroid-sparing drugs, such as methotrexate (a chemotherapy drug) or other DMARDs, are given to compensate for the reduction in oral steroids. Once the oral steroids are reduced to a less toxic level, the sparing agents can also be gradually withdrawn. Lab results are closely monitored during the tapering process to ensure that the disease does not recur.
In the cases where steroids or second-line drugs are not tolerated or are ineffective, there are other treatments that can be tried. These include other chemotherapy drugs, such as ciclosporin, infliximab, or other DMARDs. Another is intravenous immunoglobulin (IVIg), a blood product that has been shown to be very effective against JDMS.
To treat the skin rash, anti-malarial drugs, such as hydroxychloroquine (Plaquenil) are usually given. Topical steroid creams (hydrocortisone) may help some patients, and anti-inflammatory creams (such as tacrolimus) are proving to be very effective. Dry skin caused by the rash can be combated by regular application of sunscreen or any moisturizing cream. Most JDM patients are very sensitive to sun exposure, and sunburn may be a disease activity trigger in some, so daily application of high-SPF sunscreen is often recommended.
JIA is best treated by a multidisciplinary team. The major emphasis of treatment for JIA is to help the child regain normal level of physical and social activities. This is accomplished with the use of physical therapy, pain management strategies, and social support. Another emphasis of treatment is to control inflammation and extra-articular symptoms quickly. Doing so should help to reduce joint damage and other symptoms, which will help reduce levels of permanent damage leading to disability.
Beneficial advances in drug treatment have been made over the last 20 years. Most children are treated with nonsteroidal anti-inflammatory drugs and intra-articular corticosteroid injections. Methotrexate, a disease-modifying antirheumatic drug (DMARD) is a powerful drug which helps suppress joint inflammation in the majority of JIA patients with polyarthritis (though less useful in systemic arthritis). Newer drugs have been developed recently, such as TNF alpha blockers, such as etanercept. No controlled evidence supports the use of alternative remedies such as specific dietary exclusions, homeopathic treatment, or acupuncture. However, an increased consumption of omega-3 fatty acids proved to be beneficial in two small studies.
Celecoxib has been found effective in one study.
Other aspects of managing JIA include physical and occupational therapy. Therapists can recommend the best exercise and also make protective equipment. Moreover, the child may require the use of special supports, ambulatory devices, or splints to help them ambulate and function normally.
Surgery is only used to treat the most severe cases of JIA. In all cases, surgery is used to remove scars and improve joint function.
Home remedies that may help JIA includes getting regular exercises to increase muscle strength and joint flexibility. Swimming is perhaps the best activity for all children with JIA. Stiffness and swelling can also be reduced with application of cold packs, but a warm bath or shower can also improve joint mobility.
In the future, genetic testing may be available allowing earlier detection of JIA. Early detection will help determine the severity of the disease in each child and help identify which therapies will be the most effective and beneficial treatment options.
There are several types of medications that are used for the treatment of arthritis. Treatment typically begins with medications that have the fewest side effects with further medications being added if insufficiently effective.
Depending on the type of arthritis, the medications that are given may be different. For example, the first-line treatment for osteoarthritis is acetaminophen (paracetamol) while for inflammatory arthritis it involves non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen. Opioids and NSAIDs are less well tolerated.
Rheumatoid arthritis (RA) is autoimmune so, in addition to pain medications and anti-inflammatory drugs, is treated with another category of drug called disease-modifying antirheumatic drugs (DMARDs), which act on the immune system to slow down the progression of RA. An example of this type of drug is methotrexate.
RS3PE responds excellently to low dose corticosteroids, with sustained and often complete remission. Non-steroidal anti-inflammatory drugs (NSAIDs) have also been used. Hydroxychloroquine has proven effective in some cases.
Adult-onset Still's disease is treated with anti-inflammatory drugs. Steroids such as prednisone are used to treat severe symptoms of Still's. Other commonly used medications include hydroxychloroquine, penicillamine, azathioprine, methotrexate, etanercept, anakinra, cyclophosphamide, adalimumab, rituximab, and infliximab.
Newer drugs target interleukin-1 (IL-1), particularly IL-1β. A randomized, multicenter trial reported better outcomes in a group of 12 patients treated with anakinra than in a group of 10 patients taking other disease-modifying antirheumatic drugs. Other anti-IL1β drugs are being developed, including canakinumab and rilonacept.
The condition "juvenile-onset Still's disease" is now usually grouped under juvenile rheumatoid arthritis. However, there is some evidence that the two conditions are closely related.
The major types of medications used to treat ankylosing spondylitis are pain-relievers and drugs aimed at stopping or slowing the progression of the disease. All of these have potentially serious side effects. Pain-relieving drugs come in two major classes:
- The mainstay of therapy in all seronegative spondyloarthropathies are anti-inflammatory drugs, which include NSAIDs such as ibuprofen, phenylbutazone, diclofenac, indomethacin, naproxen and COX-2 inhibitors, which reduce inflammation and pain. Indomethacin is a drug of choice. 2012 research showed that those with AS and elevated levels of acute phase reactants seem to benefit most from continuous treatment with NSAIDs.
- Opioid painkillers
Medications used to treat the progression of the disease include the following:
- Disease-modifying antirheumatic drugs (DMARDs) such as sulfasalazine can be used in people with peripheral arthritis. For axial involvement, evidence does not support sulfasalazine. Other DMARDS, such as methotrexate, did not have enough evidence to prove their effect. Generally, systemic corticosteroids were not used due to lack of evidence. Local injection with corticosteroid can be used for certain people with peripheral arthritis.
- Tumor necrosis factor-alpha (TNFα) blockers (antagonists), such as the biologics etanercept, infliximab, golimumab and adalimumab, have shown good short-term effectiveness in the form of profound and sustained reduction in all clinical and laboratory measures of disease activity. Trials are ongoing to determine their long-term effectiveness and safety. The major drawback is the cost. An alternative may be the newer, orally-administered non-biologic apremilast, which inhibits TNF-α secretion, but a recent study did not find the drug useful for ankylosing spondylitis.
- Anti-interleukin-6 inhibitors such as tocilizumab, currently approved for the treatment of rheumatoid arthritis, and rituximab, a monoclonal antibody against CD20, are also undergoing trials.
- Interleukin-17A inhibitor secukinumab is an option for the treatment of active ankylosing spondylitis that has responded inadequately to (TNFα) blockers.
In severe cases of PM and DM with systemic signs, an initial three to five days on intravenous corticosteroid (methylprednisolone) may be used; but normally treatment begins with a single daily (after breakfast) high dose of oral corticosteroid (prednisone). After a month or so the strength of every second day's dose is very gradually reduced over three to four months, to minimize the negative effects of the prednisone. When a high dose of prednisone cannot be reduced without losing muscle strength, or when prednisone is effective but it is producing significant complications, "steroid sparing" oral immunosuppressants such as azathioprine, mycophenolate mofetil, methotrexate and cyclosporine, may be used in combination with reduced prednisone. Some of these steroid sparing drugs can take several months to demonstrate an effect.
To minimize side effects, patients on corticosteroids should follow a strict high-protein, low-carbohydrate, low-salt diet; and with long-term corticosteroid use a daily calcium supplement and weekly vitamin D supplement (and a weekly dose of Fosamax for postmenopausal women) should be considered.
For patients not responding to this approach there is weak evidence supporting the use of intravenous immunoglobulin, ciclosporin, tacrolimus, mycophenolate mofetil and other agents; and trials of rituximab have indicated a potential therapeutic effect.
No specific cure is known. Treatment is largely supportive. Nonsteroidal anti-inflammatory drugs (NSAIDs) are indicated for tender lymph nodes and fever, and corticosteroids are useful in severe extranodal or generalized disease.
Symptomatic measures aimed at relieving the distressing local and systemic complaints have been described as the main line of management of KFD. Analgesics, antipyretics, NSAIDs, and corticosteroids have been used. If the clinical course is more severe, with multiple flares of bulky enlarged cervical lymph nodes and fever, then a low-dose corticosteroid treatment has been suggested.
In general, studies have shown that physical exercise of the affected joint can noticeably improve long-term pain relief. Furthermore, exercise of the arthritic joint is encouraged to maintain the health of the particular joint and the overall body of the person.
Individuals with arthritis can benefit from both physical and occupational therapy. In arthritis the joints become stiff and the range of movement can be limited. Physical therapy has been shown to significantly improve function, decrease pain, and delay need for surgical intervention in advanced cases. Exercise prescribed by a physical therapist has been shown to be more effective than medications in treating osteoarthritis of the knee. Exercise often focuses on improving muscle strength, endurance and flexibility. In some cases, exercises may be designed to train balance. Occupational therapy can provide assistance with activities as well as equipment.
There is no cure for AS, although treatments and medications can reduce symptoms and pain.
Treatments for autoimmune disease have traditionally been immunosuppressive, anti-inflammatory, or palliative. Managing inflammation is critical in autoimmune diseases. Non-immunological therapies, such as hormone replacement in Hashimoto's thyroiditis or Type 1 diabetes mellitus treat outcomes of the autoaggressive response, thus these are palliative treatments. Dietary manipulation limits the severity of celiac disease. Steroidal or NSAID treatment limits inflammatory symptoms of many diseases. IVIG is used for CIDP and GBS. Specific immunomodulatory therapies, such as the TNFα antagonists (e.g. etanercept), the B cell depleting agent rituximab, the anti-IL-6 receptor tocilizumab and the costimulation blocker abatacept have been shown to be useful in treating RA. Some of these immunotherapies may be associated with increased risk of adverse effects, such as susceptibility to infection.
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for autoimmune disorders.
Despite its very similar clinical presentation to PM, IBM does not respond to the drugs that effectively treat PM, and there is no proven effective therapy for IBM. Alemtuzumab is being studied but as of May 2013 it had not demonstrated clinical effectiveness in IBM. Dysphagia (difficulty swallowing) may be improved by intravenous immunoglobulin, though more trials are needed. Non-fatiguing, systematic strength-building exercise has demonstrated benefit. Occupational and rehabilitation therapists can offer good advice on walking without falling and performing fine motor tasks, and can provide appropriate canes, braces and wheelchairs. Speech pathologists can provide advice on preventing choking episodes and reducing the anxiety of an immanent aspiration for both patients and carers.
New research shows that identifying what type of JIA a child has can help target treatment and lead to more positive outcomes. Identifying the specific biomarkers related to each type of JIA can help form more personalized treatment plans and decrease remission rates.
Children with JIA are more susceptible to cardiovascular disease, depression, sleep disturbance, anxiety and fatigue than healthy individuals. There is also limited information that suggests that children with JIA are at increased risk for malignancies when being treated with TNF blockers.
Prognosis is more positive when gene testing is undergone to identify what subtype of JIA is present in the child. Standardized treatment protocols are in place specific to each subtype of JIA. Treatment is more successful when targeted to the specific subtype of JIA.
Acne treatment may require oral tetracycline antibiotics or isotretinoin. Treatments directed at tumor necrosis factor (TNF) (infliximab, etanercept) and interleukin-1 (anakinra) have shown a good response in resistant arthritis and pyoderma gangrenosum. Other traditional immunosuppressant treatments for arthritis or pyoderma gangrenosum may also be used.
Polymyositis and dermatomyositis are first treated with high doses of a corticosteroids
Vitamin D/Sunlight
Omega-3 Fatty Acids
Probiotics/Microflora
Antioxidants
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
Topical treatment for the skin changes of scleroderma do not alter the disease course, but may improve pain and ulceration. A range of NSAIDs (nonsteroidal anti-inflammatory drugs) can be used to ease painful symptoms, such as naproxen. There is limited benefit from steroids such as prednisone. Episodes of Raynaud's phenomenon sometimes respond to nifedipine or other calcium channel blockers; severe digital ulceration may respond to prostacyclin analogue iloprost, and the dual endothelin-receptor antagonist bosentan may be beneficial for Raynaud's phenomenon. The skin tightness may be treated systemically with methotrexate and ciclosporin. and the skin thickness treated with penicillamine.
A vast number of traditional herbal remedies were recommended for "rheumatism". Modern medicine, both conventional and alternative, recognises that the different rheumatic disorders have different causes (and several of them have multiple causes) and require different kinds of treatment.
Nevertheless, initial therapy of the major rheumatological diseases is with analgesics, such as paracetamol and non-steroidal anti-inflammatory drugs (NSAIDs), members of which are ibuprofen and naproxen. Often, stronger analgesics are required.
The ancient Greeks recorded that bee venom had some beneficial effects on some types of rheumatism. Bee and ant stings were known as a folk remedy in the late 19th century, and at least one physician developed a treatment consisting of repeated formic acid injections. Certain Amazonian tribes, including the Zo'é, use fire ant stings as a remedy for aches and pains.
Cod liver oil has also been used as a remedy.
Neem Tree Oil according to East Indian cultures has also been used as a remedy.
Scleroderma renal crisis, the occurrence of acute renal failure and malignant hypertension (very high blood pressure with evidence of organ damage) in people with scleroderma, is effectively treated with drugs from the class of the ACE inhibitors. The benefit of ACE inhibitors extends even to those who have to commence dialysis to treat their kidney disease, and may give sufficient benefit to allow the discontinuation of renal replacement therapy.
Treatment consists primarily of immunosuppressive drugs (e.g., hydroxychloroquine and corticosteroids). An interesting second line drug is methotrexate in its low-dose schedule. In 2011, the U.S. Food and Drug Administration (FDA) approved the first new drug for lupus in more than 50 years to be used in the US, belimumab. In addition to medicative therapy, due to the psychological and social impacts that Lupus may have on an individual, Cognitive Behavioural Therapy (CBT) has also been demonstrated to be effective in reducing stress, anxiety, and depression in lupus sufferers.
The best treatment for MAS has not been firmly established. Most commonly used treatments include high-dose glucocorticoids, and cyclosporine. In refractory cases treatment regimens are used similar to that in HLH.
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).