Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
Earlier workers suggested the use of calcium fluoride; now sodium fluoride is the preferred compound. Fluoride ions inhibit the rapid progression of disease. In the otosclerotic ear, there occurs formation of hydroxylapatite crystals which lead to stapes (or other) fixation. The administration of fluoride replaces the hydroxyl radical with fluoride leading to the formation of fluorapatite crystals. Hence, the progression of disease is considerably slowed down and active disease process is arrested.
This treatment cannot reverse conductive hearing loss, but may slow the progression of both the conductive and sensorineural components of the disease process. Otofluor, containing sodium fluoride, is one treatment. Recently, some success has been claimed with a second such treatment, bisphosphonate medications that inhibit bone destruction. However, these early reports are based on non-randomized case studies that do not meet standards of clinical trials. There are numerous side-effects to both pharmaceutical treatments, including occasional stomach upset, allergic itching, and increased joint pains which can lead to arthritis. In the worst case, bisphosphonates may lead to osteonecrosis of the auditory canal itself. Finally, neither approach has been proven to be beneficial after the commonly preferred method of surgery has been undertaken.
About half of people with SSNHL will recover some or all of their hearing spontaneously, usually within one to two weeks from onset. Eighty-five percent of those who receive treatment from an otolaryngologist (sometimes called an ENT) will recover some of their hearing.
- vitamins and antioxidants
- vasodilators
- betahistine (Betaserc), an anti-vertigo drug
- hyperbaric oxygen
- anti-inflammatory agents, primarily oral corticosteroids such as prednisone, methylprednisone
- Intratympanic administration - Gel formulations are under investigation to provide more consistent drug delivery to the inner ear. Local drug delivery can be accomplished through intratympanic administration, a minimally invasive procedure where the ear drum is anesthetized and a drug is administered into the middle ear. From the middle ear, a drug can diffuse across the round window membrane into the inner ear. Intratympanic administration of steroids may be effective for sudden sensorineural hearing loss for some patients, but high quality clinical data has not been generated. Intratympanic administration of an anti-apoptotic peptide (JNK inhibitor) is currently being evaluated in late-stage clinical development.
There are various methods to treat otosclerosis. However the method of choice is a procedure known as Stapedectomy.
Early attempts at hearing restoration via the simple freeing the stapes from its sclerotic attachments to the oval window were met with temporary improvement in hearing, but the conductive hearing loss would almost always recur. A stapedectomy consists of removing a portion of the sclerotic stapes footplate and replacing it with an implant that is secured to the incus. This procedure restores continuity of ossicular movement and allows transmission of sound waves from the eardrum to the inner ear.
A modern variant of this surgery called a stapedotomy, is performed by drilling a small hole in the stapes footplate with a micro-drill or a laser, and the insertion of a piston-like prothesis. The success rate of either surgery depends greatly on the skill and the familiarity with the procedure of the surgeon. However, comparisons have shown stapedotomy to yield results at least as good as stapedectomy, with fewer complications, and thus stapedotomy is preferred under normal circumstances.
Treatment modalities fall into three categories: pharmacological, surgical, and management. As SNHL is a physiologic degradation and considered permanent, there are as of this time, no approved or recommended treatments.
There have been significant advances in identification of human deafness genes and elucidation of their cellular mechanisms as well as their physiological function in mice. Nevertheless, pharmacological treatment options are very limited and clinically unproven. Such pharmaceutical treatments as are employed are palliative rather than curative, and addressed to the underlying cause if one can be identified, in order to avert progressive damage.
Profound or total hearing loss may be amenable to management by cochlear implants, which stimulate cochlear nerve endings directly. A cochlear implant is surgical implantation of a battery powered electronic medical device in the inner ear. Unlike hearing aids, which make sounds louder, cochlear implants do the work of damaged parts of the inner ear (cochlea) to provide sound signals to the brain. These consist of both internal implanted electrodes and magnets and external components. The quality of sound is different than natural hearing but may enable the recipient to better recognize speech and environmental sounds.
Because of risk and expense, such surgery is reserved for cases of severe and disabling hearing impairment
Management of sensorineural hearing loss involves employing strategies to support existing hearing such as lip-reading, enhanced communication etc. and amplification using hearing aids. Hearing aids are specifically tuned to the individual hearing loss to give maximum benefit.
A child with a congenital hearing loss should begin receiving treatment before 6 months of age. Studies suggest that children treated this early are usually able to develop communication skills (using spoken or sign language) that are as good as those of hearing peers.
In the United States of America, because of a Federal law (the Individuals with Disabilities Education Act), children with a hearing loss between birth and 3 years of age have the right to receive interdisciplinary assessment and early intervention services at little or no cost. After age 3, early intervention and special education programs are provided through the public school system.
There are a number of treatment options available, and parents will need to decide which are most appropriate for their child. They will need to consider the child’s age, developmental level and personality, the severity of the hearing loss, as well as their own preferences. Ideally a team of experts including the child’s primary care provider, an otolaryngologist, a speech-language pathologist, audiologist and an educator will work closely with the parents to create an Individualized Family Service Plan. Treatment plans can be changed as the child gets older.
Children as young as 4 weeks of age can benefit from a hearing aid. These devices amplify sound, making it possible for many children to hear spoken words and develop language. However, some children with severe to profound hearing loss may not be able to hear enough sound, even with a hearing aid, to make speech audible. A behind-the-ear hearing aid is often recommended for young children because it is safer and more easily fitted and adjusted as the child grows as compared to one that fits within the ear.
Parents also will need to decide how their family and child are going to communicate. If the child is going to communicate orally (speech), s/he may need assistance learning listening skills and lip reading skills to help her/him understand what others are saying. Many children with hearing loss also need speech or language therapy.
A child also can learn to communicate using a form of sign language. In the United States of America, the type preferred by most deaf adults is American Sign Language (ASL), which has rules and grammar that is distinct from English. There are also several variations of sign language that can be used along with spoken English which are standard in English-speaking countries outside the United States.
There is also a visual model of spoken language called cued speech. Learning to lip read is very difficult because many sounds look the same on the lips. Cued speech enables young children with hearing loss to clearly see what is being said, and learn spoken languages with normal grammar and vocabulary. It clarifies lip reading using 8 hand shapes in 4 positions and usually takes less than 20 hours to learn the entire system.
Surgery may be recommended if a child has a permanent conductive hearing loss caused by malformations of the outer or middle ear, or by repeated ear infections. Although fluid in the middle ear usually results in only temporary hearing loss, chronic ear infection can cause a child to fall behind in language skills. In some cases, a doctor may suggest inserting a tube through the eardrum to allow the middle ear to drain. This procedure generally does not require an overnight hospital stay.
Surgery also may be an option for some children with severe to profound sensorineural hearing loss. A device called a cochlear implant can be surgically inserted in the inner ear of children as young as 12 months of age to stimulate hearing. The surgery requires a hospital stay of one to several days. With additional language and speech therapy, children with cochlear implants may learn to understand speech and speak reasonably well, but the amount of improvement is variable.
Once a child is diagnosed, the immediate and anticipated reaction of the parents and immediate family is one of the denial. Doctors or the audiologists need to counsel the family, help them cope with the situation and encourage them to look forward to solutions to overcome the problem. Often when the family is told about the excellent options available for a hearing impaired child, the chances of acceptance are much better. Once the family accepts the handicap, half the battle is over and rehabilitation can begin.
The type of intervention required depends on several factors. Chief among these is the degree of impairment. When a child has a fair degree of residual hearing, the correct intervention would be fitting "optimised" hearing aids. "Optimisation" means fitting the child with a hearing aid appropriate to its degree of deafness.
Today a variety of good quality hearing aids are available – analog or digital body worn (for small children) or ear level for older children. When fitting a hearing aid, a competent audiologist has to assess the child's residual hearing, look at the hearing aid's performance and fit the child with an appropriate instrument. Equally important is the ear mould, which has to be custom made to suit the shape of the child's ear.
If a child has profound or total deafness, the benefits of hearing aids are limited. Depending upon the level and type of hearing loss, cochlear implants may be used instead of hearing aids.
Management falls into three modalities: surgical treatment, pharmaceutical treatment, and supportive, depending on the nature and location of the specific cause.
In cases of infection, antibiotics or antifungal medications are an option. Some conditions are amenable to surgical intervention such as middle ear fluid, cholesteatoma, otosclerosis. If conductive hearing loss is due to head trauma, surgical repair is an option. If absence or deformation of ear structures cannot be corrected, or if the patient declines surgery, hearing aids which amplify sounds are a possible treatment option. Bone conduction hearing aids are useful as these deliver sound directly, through bone, to the cochlea or organ of hearing bypassing the pathology. These can be on a soft or hard headband or can be inserted surgically, a bone anchored hearing aid, of which there are several types. Conventional air conduction hearing aids can also be used.
No specific treatment exists for Pendred syndrome. Speech and language support and hearing aids are important. Cochlear implants may be needed if the hearing loss drops to severe to profound levels and can improve language skills. If thyroid hormone levels are decreased, thyroid hormone supplements may be required. Patients are advised to take precautions against head injury.
Treatment depends on the specific cause if known as well as the extent, type and configuration of the hearing loss. Most hearing loss, that resulting from age and noise, is progressive and irreversible, and there are currently no approved or recommended treatments; management is by hearing aid. A few specific kinds of hearing loss are amenable to surgical treatment. In other cases, treatment is addressed to underlying pathologies, but any hearing loss incurred may be permanent.
There are a number of devices that can improve hearing in those who are deaf or hard of hearing or allow people with these conditions to manage better in their lives.
There is no treatment, surgical or otherwise, for hearing loss due to the most common causes (age, noise, and genetic defects). For a few specific conditions, surgical intervention can provide a remedy:
- surgical correction of superior canal dehiscence
- myringotomy, surgical insertion of drainage ventilation tubes in the tympanic membrane. Such placement is usually temporary until the underlying pathology (infection or other inflammation) can be resolved.
- radiotherapy or surgical excision of vestibular schwannoma or acoustic neuroma, though, in most cases, it is unlikely that hearing will be preserved
- Stapedectomy and stapedotomy for otosclerosis - replacement or reshaping of the stapes bone of the middle ear can restore hearing in cases of conductive hearing loss
Surgical and implantable hearing aids are an alternative to conventional external hearing aids.
If the ear is dry and not infected, an air conduction aid could be tried; if the ear is draining, a direct bone condition hearing aid is often the best solution. If the conductive part of the hearing loss is more than 30–35 dB, an air conduction device could have problems overcoming this gap. A bone-anchored hearing aid could, in this situation, be a good option.
The active bone conduction hearing implant Bonebridge is also an option. This implant is invisible under the intact skin and therefore minimises the risk of skin irritations.
Cochlear implants improve outcomes in people with hearing loss in either one or both ears. They work by artificial stimulation of the cochlear nerve by providing an electric impulse substitution for the firing of hair cells. They are expensive, and require programming along with extensive training for effectiveness.
Cochlear implants as well as bone conduction implants can help with single sided deafness.
Middle ear implants or bone conduction implants can help with conductive hearing loss.
People with cochlear implants are at a higher risk for bacterial meningitis. Thus, meningitis vaccination is recommended. People who have hearing loss, especially those who develop a hearing problem in childhood or old age, may need support and technical adaptations as part of the rehabilitation process. Recent research shows variations in efficacy but some studies show that if implanted at a very young age, some profoundly impaired children can acquire effective hearing and speech, particularly if supported by appropriate rehabilitation.
At present, presbycusis, being primarily sensorineural in nature, cannot be prevented, ameliorated or cured. Treatment options fall into three categories: pharmacological, surgical and management.
- There are no approved or recommended pharmaceutical treatments for presbycusis.
These are surgically implanted hearing aids inserted onto the middle ear. These aids work by directly vibrating the ossicles, and are cosmetically favorable due to their hidden nature.
As of 2012 there has only been one small-scale study comparing CROS systems.
One study of the BAHA system showed a benefit depending on the patient's transcranial attenuation. Another study showed that sound localisation was not improved, but the effect of the head shadow was reduced.
While use of physical therapy early after the onset of MD is probably not useful due to the fluctuating disease course, physical therapy to help retraining of the balance system appears to be useful to reduce both subjective and objective deficits in balance over the longer term.
During MD episodes, medications to reduce nausea are used, as are drugs to reduce the anxiety caused by vertigo.
For longer term treatment to stop progression, the evidence base is weak for all treatments.
Although a causal relation between allergy and Menière's disease is uncertain, medication to control allergies may be helpful.
Diuretics are widely used to manage Ménière's on the theory that it reduces fluid buildup in the ear. Based on evidence from multiple but small clinical trials, diuretics appear to be useful for reducing the frequency of episodes of dizziness, but do not seem to prevent hearing loss.
In cases where there is significant hearing loss and continuing severe episodes of vertigo, a chemical labyrinthectomy, in which a drug (such as gentamicin) that "kills" parts or most of the vestibular apparatus is injected into the middle ear.
No specific treatment may be available, but withdrawal of the ototoxic drug may be warranted when the consequences of doing so are less severe than those of the ototoxicity.
Ototoxic monitoring during exposure is recommended by the American Academy of Audiology to allow for proper detection and possible prevention or rehabilitation of the hearing loss through a cochlear implant or hearing aid. Monitoring can be completed through performing otoacoustic emissions testing or high frequency audiometry. Successful monitoring includes a baseline test before, or soon after, exposure to the ototoxin. Follow-up testing is completed in increments after the first exposure, throughout the cessation of treatment. Shifts in hearing status are monitored and relayed to the prescribing physician to make treatment decisions.
It is difficult to distinguish between nerve damage and structural damage due to similarity of the symptoms. Diagnosis of ototoxicity typically results from ruling out all other possible sources of hearing loss and is often the catchall explanation for the symptoms. Treatment options vary depending on the patient and the diagnosis. Some patients experience only temporary symptoms that do not require drastic treatment while others can be treated with medication. Physical therapy may prove useful for regaining balance and walking abilities. Cochlear implants are sometimes an option to restore hearing. Such treatments are typically taken to comfort the patient, not to cure the disease or damage caused by ototoxicity. There is no cure or restoration capability if the damage becomes permanent, although cochlear nerve terminal regeneration has been observed in chickens, which suggests that there may be a way to accomplish this in humans.
Other causes of congenital hearing loss that are not hereditary in nature include prenatal infections, illnesses, toxins consumed by the mother during pregnancy or other conditions occurring at the time of birth or shortly thereafter. These conditions typically cause sensorineural hearing loss ranging from mild to profound in degree.
Certain types of diuretics are associated with varying levels of risk for ototoxicity. Loop and thiazide diuretics carry this side effect. The loop diuretic furosemide is associated with ototoxicity, particularly when doses exceed 240 mg per hour. The related compound ethacrynic acid has a higher association with ototoxicity, therefore it is preferred only for patients with sulfa allergies. Diuretics are thought to alter the ionic gradient within the stria vascularis Bumetanide confers a decreased risk of ototoxicity compared to furosemide.
School-age children with unilateral hearing loss tend to have poorer grades and require educational assistance. This is not the case with everyone, however. They can also be perceived to have behavioral issues.
People afflicted with UHL have great difficulty locating the source of any sound. They may be unable to locate an alarm or a ringing telephone. The swimming game Marco Polo is generally impossible for them.
When wearing stereo headphones, people with unilateral hearing loss can hear only one channel, hence the panning information (volume and time differences between channels) is lost; some instruments may be heard better than others if they are mixed predominantly to one channel, and in extreme cases of sound production, such as complete stereo separation or stereo-switching, only part of the composition can be heard; in games using 3D audio effects, sound may not be perceived appropriately due to coming to the disabled ear. This can be corrected by using settings in the software or hardware—audio player, OS, amplifier or sound source—to adjust balance to one channel (only if the setting downmixes sound from both channels to one), or there may be an option to outright downmix both channels to mono. Such settings may be available via the device or software's accessibility features. As hardware solutions, stereo-to-mono adapters may be available to receive mono sound in stereo headphones from a stereo sound source, or some monaural headsets for cellphones and VOIP communication may combine stereo sound to mono (though headphones for voice communication typically offer lower audio quality than headphones targeted for listening to music). From the standpoint of sound fidelity, sound information in downmixed mono channel will, in any case, differ from that in either of the source channels or what is perceived by a normal-hearing person, thus technically some audio quality is lost (for example, the same or slightly different sound occurrences in two channels, with time delay between them, will be merged to a sound in the mono channel that unavoidably cannot correspond to the intent of the sound producer); however, such loss is most probably unnoticeable, especially compared to other distortions inherent in sound reproduction, and to the person's problems from hearing loss.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
Children with CHARGE syndrome may have a number of life-threatening medical conditions; with advances in medical care, these children can survive and can thrive with the support of a multidisciplinary team of medical professionals. Therapies and education must take into consideration hearing impairment, vision problems, and any others. Early intervention, such as occupational, speech-language, and physical therapy, to improve static posture, ambulation, and self-care skills is important. The intelligence of children with multiple health impairments, such as combined deafblindness, can be underestimated in the absence of early intervention.
This can be done by annual evaluations by multidiciplinary team involving otolaryngologist, clinical geneticist, a pediatrician, the expertise of an educator of the deaf, a neurologist is appropriate.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
There is currently no specified treatment for individuals suffering from otodental syndrome. Considering that there are many possible genetic and phenotypic associations with the condition, treatment is provided based on each individual circumstance. It is recommended that those affected seek ear, nose & throat specialists, dental health specialists, and facial oral health specialists immediately; in order to determine potential treatment options.
Common treatment methods given are:
- Dental treatment/management – which can be complex, interdisciplinary and requires a regular follow up. Tooth extraction(s)and if needed, medications may be administered for pain, anxiety, and anti-inflammation. The affected individual is usually placed on a strict and preventative dental regiment in order to maintain appropriate oral hygiene and health.
- Endodontic treatment – individuals consult with an endodontist to analyze the individuals dental pulp. Typically endodontic treatment proves to be difficult due to duplicated pulp canals within the affected teeth. There may be a need for multiple extractions as well. Dental prosthesis and/or dental implants may be necessary for individuals that lack proper oral function, appearance, and comfort.
- Orthodontic treatment – given the predicament of the size and location of the affected oral area, molars and canines, orthodontic treatment is generally required in order treat any problems associated with the individuals bite pattern and tooth appearance.
- Hearing aids – in some cases affected individuals will suffer from hearing imparities and it may be necessary for hearing aid use.
The functional prognosis is mostly good with those that suffer from otodental syndrome. Appropriate dental treatment, hearing aids, and visitation to necessary specialists are recommended. Quality of life may be affected by psychological and functional aspects. It is also recommended that genetic counseling be given to families that have or may have this condition.
Hearing loss with craniofacial syndromes is a common occurrence. Many of these multianomaly disorders involve structural malformations of the outer or middle ear, making a significant hearing loss highly likely.