Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.
The treatment of choice is penicillin, and the duration of treatment is around 10 days. Antibiotic therapy (using injected penicillin) has been shown to reduce the risk of acute rheumatic fever. In individuals with a penicillin allergy, erythromycin, other macrolides, and cephalosporins have been shown to be effective treatments.
Treatment with ampicillin/sulbactam, amoxicillin/clavulanic acid, or clindamycin is appropriate if deep oropharyngeal abscesses are present, in conjunction with aspiration or drainage. In cases of streptococcal toxic shock syndrome, treatment consists of penicillin and clindamycin, given with intravenous immunoglobulin.
For toxic shock syndrome and necrotizing fasciitis, high-dose penicillin and clindamycin are used. Additionally, for necrotizing fasciitis, surgery is often needed to remove damaged tissue and stop the spread of the infection.
No instance of penicillin resistance has been reported to date, although since 1985, many reports of penicillin tolerance have been made. The reason for the failure of penicillin to treat "S. pyogenes" is most commonly patient noncompliance, but in cases where patients have been compliant with their antibiotic regimen, and treatment failure still occurs, another course of antibiotic treatment with cephalosporins is common.
Untreated streptococcal pharyngitis usually resolves within a few days. Treatment with antibiotics shortens the duration of the acute illness by about 16 hours. The primary reason for treatment with antibiotics is to reduce the risk of complications such as rheumatic fever and retropharyngeal abscesses; antibiotics are effective if given within 9 days of the onset of symptoms.
Depending on the severity, treatment involves either oral or intravenous antibiotics, using penicillins, clindamycin, or erythromycin. While illness symptoms resolve in a day or two, the skin may take weeks to return to normal.
Because of the risk of reinfection, prophylactic antibiotics are sometimes used after resolution of the initial condition. However, this approach does not always stop reinfection.
Pain medication such as NSAIDs and paracetamol (acetaminophen) helps in the management of pain associated with strep throat. Viscous lidocaine may also be useful. While steroids may help with the pain, they are not routinely recommended. Aspirin may be used in adults but is not recommended in children due to the risk of Reye syndrome.
"S. pyogenes" infections are best prevented through effective hand hygiene. No vaccines are currently available to protect against "S. pyogenes" infection, although research has been conducted into the development of one. Difficulties in developing a vaccine include the wide variety of strains of "S. pyogenes" present in the environment and the large amount of time and number of people that will be needed for appropriate trials for safety and efficacy of the vaccine.
As with many streptococcal infections, penicillin or penicillin-derivative antibiotics are the most effective treatments. However, some authorities are of the opinion that use of antibiotics is contra-indicated once abscesses have begun to form, as they pre-dispose to lymphatic spread of the infection (so-called bastard strangles) which has a much higher mortality rate.
After an abscess has burst, it is very important to keep the wound clean. A diluted povidone-iodine solution has been used with good results to disinfect the open hole, flushing the inside with a syringe tipped catheter or with a teat cannula, followed by gentle scrubbing to keep the surrounding area clean.
Symptomatic therapy is an alternative treatment, and is where warm packs are used to mature the abscesses so making it less painful and more comfortable for the horse itself; but once the abscesses have been matured they must be kept clean to prevent further infections.This treatment for "S.equi" only helps to reduce pain for the horse rather than curing the infection.
If the tonsillitis is caused by group A streptococcus, then antibiotics are useful, with penicillin or amoxicillin being primary choices. Cephalosporins and macrolides are considered good alternatives to penicillin in the acute setting. A macrolide such as erythromycin is used for people allergic to penicillin. Individuals who fail penicillin therapy may respond to treatment effective against beta-lactamase producing bacteria such as clindamycin or amoxicillin-clavulanate. Aerobic and anaerobic beta lactamase producing bacteria that reside in the tonsillar tissues can "shield" group A streptococcus from penicillins.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
Chronic cases may be treated with tonsillectomy (surgical removal of tonsils) as a choice for treatment. Children have had only a modest benefit from tonsillectomy for chronic cases of tonsillitis.
Both intramuscular and intranasal vaccines are available. Isolation of new horses for 4 to 6 weeks, immediate isolation of infected horses, and disinfection of stalls, water buckets, feed troughs, and other equipment will help prevent the spread of strangles. As with any contagious disease, handwashing is a simple and effective tool.
Antibiotics are usually prescribed, with the agent selected based on suspected organism and presence or absence of purulence, although the best treatment choice is unclear. If an abscess is also present, surgical drainage is usually indicated, with antibiotics often prescribed for co-existent cellulitis, especially if extensive. Pain relief is also often prescribed, but excessive pain should always be investigated, as it is a symptom of necrotizing fasciitis. Elevation of the affected area is often recommended.
Steroids may speed recovery in those on antibiotics.
Antibiotics choices depend on regional availability, but a penicillinase-resistant semisynthetic penicillin or a first-generation cephalosporin is currently recommended for cellulitis without abscess. A course of antibiotics is not effective in between 6 and 37% of cases.
The infection is frequently penicillin resistant. There are a number of antibiotics options including amoxicillin/clavulanate, clindamycin, or metronidazole in combination with benzylpenicillin (penicillin G) or penicillin V. Piperacillin/tazobactam may also be used.
Note that, in neonates, sepsis is difficult to diagnose clinically. They may be relatively asymptomatic until hemodynamic and respiratory collapse is imminent, so, if there is even a remote suspicion of sepsis, they are frequently treated with antibiotics empirically until cultures are sufficiently proven to be negative. In addition to fluid resuscitation and supportive care, a common antibiotic regimen in infants with suspected sepsis is a beta-lactam antibiotic (usually ampicillin) in combination with an aminoglycoside (usually gentamicin) or a third-generation cephalosporin (usually cefotaxime—ceftriaxone is generally avoided in neonates due to the theoretical risk of kernicterus.) The organisms which are targeted are species that predominate in the female genitourinary tract and to which neonates are especially vulnerable to, specifically Group B Streptococcus, "Escherichia coli", and "Listeria monocytogenes" (This is the main rationale for using ampicillin versus other beta-lactams.) Of course, neonates are also vulnerable to other common pathogens that can cause meningitis and bacteremia such as "Streptococcus pneumoniae" and "Neisseria meningitidis". Although uncommon, if anaerobic species are suspected (such as in cases where necrotizing enterocolitis or intestinal perforation is a concern, clindamycin is often added.
Granulocyte-macrophage colony stimulating factor (GM-CSF) is sometimes used in neonatal sepsis. However, a 2009 study found that GM-CSF corrects neutropenia if present but it has no effect on reducing sepsis or improving survival.
Trials of probiotics for prevention of neonatal sepsis have generally been too small and statistically underpowered to detect any benefit, but a randomized controlled trial that enrolled 4,556 neonates in India reported that probiotics significantly reduced the risk of developing sepsis. The probiotic used in the trial was "Lactobacillus plantarum".
A very large meta-analysis investigated the effect of probiotics on preventing late-onset sepsis (LOS) in neonates. Probiotics were found to reduce the risk of LOS, but only in babies who were fed human milk exclusively. It is difficult to distinguish if the prevention was a result of the probiotic supplementation or if it was a result of the properties of human milk. It is also still unclear if probiotic administration reduces LOS risk in extremely low birth weight infants due to the limited number of studies that investigated it. Out of the 37 studies included in this systematic review, none indicated any safety problems related to the probiotics. It would be beneficial to clarify the relationship between probiotic supplementation and human milk for future studies in order to prevent late onset sepsis in neonates.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Treatment is by removing the pus, antibiotics, sufficient fluids, and pain medication. Steroids may also be useful. Admission to hospital is generally not needed.
Antibiotics to combat the streptococcal infection are the mainstay of treatment for scarlet fever. Prompt administration of appropriate antibiotics decreases the length of illness. Peeling of the outer layer of skin however will happen despite treatment. One of the main goals of treatment is to prevent the child from developing one of the suppurative or nonsuppurative complications, especially acute rheumatic fever. As long as antibiotics are started within 9 days, it is very unlikely for the child to develop acute rheumatic fever. Antibiotic therapy has not been shown to prevent the development of poststreptococcal glomerulonephritis. Another important reason for prompt treatment with antibiotics is the ability to prevent transmission of the infection between children. An infected individual is most likely to pass on the infection to another person during the first 2 weeks. A child is no longer contagious (able to pass the infection to another child) after 24 hours of antibiotics.
The antibiotic of choice is penicillin V which is taken by mouth in pill form. Children who are not able to take pills can be given amoxicillin which comes in a liquid form and is equally effective. Duration of treatment is 10 days. Benzathine Penicillin G can be given as a one time intramuscular injection as another alternative if swallowing pills is not possible. If the patient is allergic to the family of antibiotics which both penicillin and amoxicillin are a part of (beta-lactam antibiotics), a first generation cephalosporin is used. Cephalosporin antibiotics however can still cause adverse reactions in patients whose allergic reaction to penicillin is a Type 1 Hypersensitivity reaction. In those cases it is appropriate to choose clindamycin or erythromycin instead.
Tonsillectomy, although once a reasonable treatment for recurrent streptococcal pharyngitis, is not indicated. This is due to the fact that a person can still be infected with group A streptococcus without their tonsils.
Treatment for gastroenteritis due to "Y. enterocolitica" is not needed in the majority of cases. Severe infections with systemic involvement (sepsis or bacteremia) often requires aggressive antibiotic therapy; the drugs of choice are doxycycline and an aminoglycoside. Alternatives include cefotaxime, fluoroquinolones, and co-trimoxazole.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.
Gargling salt water is often suggested but evidence looking at its usefulness is lacking. Alternative medicines are promoted and used for the treatment of sore throats. However, they are poorly supported by evidence.
In addition, people should be given antibiotics, such as second- or third-generation cephalosporins, either alone or in combination with penicillin or ampicillin for streptococcal coverage. If allergy to penicillins is present, Co-trimoxazole or clindamycin is an alternative.
The Hib vaccine is very effective at preventing the disease.
In household contacts of any unvaccinated child infected with H. influenzae, rifampicin is used as prophylaxis.