Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of Tourette's focuses on identifying and helping the individual manage the most troubling or impairing symptoms. Most cases of Tourette's are mild, and do not require pharmacological treatment; instead, psychobehavioral therapy, education, and reassurance may be sufficient. Treatments, where warranted, can be divided into those that target tics and comorbid conditions, which, when present, are often a larger source of impairment than the tics themselves. Not all people with tics have comorbid conditions, but when those conditions are present, they often take treatment priority.
There is no cure for Tourette's and no medication that works universally for all individuals without significant adverse effects. Knowledge, education and understanding are uppermost in management plans for tic disorders. The management of the symptoms of Tourette's may include pharmacological, behavioral and psychological therapies. While pharmacological intervention is reserved for more severe symptoms, other treatments (such as supportive psychotherapy or cognitive behavioral therapy) may help to avoid or ameliorate depression and social isolation, and to improve family support. Educating a patient, family, and surrounding community (such as friends, school, and church) is a key treatment strategy, and may be all that is required in mild cases.
Medication is available to help when symptoms interfere with functioning. The classes of medication with the most proven efficacy in treating tics—typical and atypical neuroleptics including risperidone (trade name Risperdal), ziprasidone (Geodon), haloperidol (Haldol), pimozide (Orap) and fluphenazine (Prolixin)—can have long-term and short-term adverse effects. The antihypertensive agents clonidine (trade name Catapres) and guanfacine (Tenex) are also used to treat tics; studies show variable efficacy, but a lower side effect profile than the neuroleptics. Stimulants and other medications may be useful in treating ADHD when it co-occurs with tic disorders. Drugs from several other classes of medications can be used when stimulant trials fail, including guanfacine (trade name Tenex), atomoxetine (Strattera) and tricyclic antidepressants. Clomipramine (Anafranil), a tricyclic, and SSRIs—a class of antidepressants including fluoxetine (Prozac), sertraline (Zoloft), and fluvoxamine (Luvox)—may be prescribed when a Tourette's patient also has symptoms of obsessive–compulsive disorder. Several other medications have been tried, but evidence to support their use is unconvincing.
Because children with tics often present to physicians when their tics are most severe, and because of the waxing and waning nature of tics, it is recommended that medication not be started immediately or changed often. Frequently, the tics subside with explanation, reassurance, understanding of the condition and a supportive environment. When medication is used, the goal is not to eliminate symptoms: it should be used at the lowest possible dose that manages symptoms without adverse effects, given that these may be more disturbing than the symptoms for which they were prescribed.
Cognitive behavioral therapy (CBT) is a useful treatment when OCD is present, and there is increasing evidence supporting the use of habit reversal (HRT) in the treatment of tics. There is evidence that HRT reduces tic severity, but there are methodological limitations in the studies, and a need for more trained specialists and better large-scale studies.
Relaxation techniques, such as exercise, yoga or meditation, may be useful in relieving the stress that may aggravate tics, but the majority of behavioral interventions (such as relaxation training and biofeedback, with the exception of habit reversal) have not been systematically evaluated and are not empirically supported therapies for Tourette's. Deep brain stimulation has been used to treat adults with severe Tourette's that does not respond to conventional treatment, but it is regarded as an invasive, experimental procedure that is unlikely to become widespread.
, studies on the impact of dietary interventions on the symptoms of Tourette's are scarce and methodologically poor, and a single dietary pattern has not been established. Anecdotal reports suggest that certain dietary interventions may relieve symptoms, such as gluten-free and low-sugar diets.
There is no consistently effective medication for SMD, and there is little evidence for any effective treatment. In non-autistic or "typically developing children", habit reversal training may be useful. No treatment is an option when movements are not interfering with daily life.
There is no cure for ASD and proper treatment depends on the case and what is most struggled with. Autism spectrum disorder is like many other disorders where when diagnosed early, can be better treated. Different types of therapy are helpful such as music therapy and physical therapy. Other treatments include auditory training, discrete trial training, facilitated communication, and sensory integration therapy.
Prognosis depends on the severity of the disorder. Recognizing symptoms early can help reduce the risk of self-injury, which can be lessened with meditations. Stereotypic movement disorder due to head trauma may be permanent.
Treatment of ADHD often includes a combination of psychological, behavioural, pharmaceutical and educational advice and interventions.
Medications commonly used in the treatment of ADHD are primarily stimulants such as methylphenidate and lisdexamphetamine and non-stimulants such as atomoxetine.
SSRI antidepressants may be unhelpful, and could worsen symptoms of ADHD.
However ADHD is often misdiagnosed as depression, particularly when no hyperactivity is present.
Valbenazine has been approved by the FDA for tardive dyskinesia. Tetrabenazine, which is a dopamine depleting drug, is sometimes used to treat tardive dyskinesia and other movement disorders. However, it is only approved to treat chorea associated with Huntington's disease. The related VMAT2 inhibitor, reserpine, has also been tried in one small randomised double-blind placebo-controlled trial as a treatment for TD with success, as has α-methyldopa. Ondansetron has shown some benefit in experimental studies on tardive dyskinesia and a variety of anti-Parkinsonian medications are used such as donepezil, baclofen, and pramipexole. Clonidine may also be useful in the treatment of TD, although dose-limiting hypotension and sedation may hinder its usage. Botox injections are used for minor focal dystonia, but not in more advanced tardive dyskinesia. Benzodiazepines are an effective treatment for TD, however their use is limited by the development of tolerance which requires ever increasing doses of the benzodiazepines to be used to attenuate TD symptoms. The most popular benzodiazepine for the treatment of TD is clonazepam. Vitamin B6 has been reported to be an effective treatment for TD in two randomised double-blind placebo-controlled trials.
In males, the branched-chain amino acid formula Tarvil, containing the amino acids valine, isoleucine, and leucine in a 3:3:4 ratio was reported as beneficial for motor symptoms in a small, non-blinded study.
There is no known "cure" for PDD-NOS, but there are interventions that can have a positive influence. Early and intensive implementation of evidence-based practices and interventions are generally believed to improve outcomes. Most of these are individualized special education strategies rather than medical or pharmaceutical treatment; the best outcomes are achieved when a team approach among supporting individuals is utilized.
Some of the more common therapies and services include:
- Visual and environmental supports, visual schedules
- Applied behavior analysis
- Discrete trial instruction (part of applied behavior analysis)
- Social stories and comic strip conversations
- Physical and occupational therapy
Before prescribing medication for these conditions which often resolve spontaneously, recommendations have pointed to improved skin hygiene, good hydration via fluids, good nutrition, and installation of padded bed rails with use of proper mattresses. Pharmacological treatments include the typical neuroleptic agents such as fluphenazine, pimozide, haloperidol and perphenazine which block dopamine receptors; these are the first line of treatment for hemiballismus. Quetiapine, sulpiride and olanzapine, the atypical neuroleptic agents, are less likely to yield drug-induced parkinsonism and tardive dyskinesia. Tetrabenazine works by depleting presynaptic dopamine and blocking postsynaptic dopamine receptors, while reserpine depletes the presynaptic catecholamine and serotonin stores; both of these drugs treat hemiballismus successfully but may cause depression, hypotension and parkinsonism. Sodium valproate and clonazepam have been successful in a limited number of cases. Stereotactic ventral intermediate thalamotomy and use of a thalamic stimulator have been shown to be effective in treating these conditions.
Medications are used to address certain behavioral problems; therapy for children with PDD should be specialized according to the child's specific needs.
Some children with PDD benefit from specialized classrooms in which the class size is small and instruction is given on a one-to-one basis. Others function well in standard special education classes or regular classes with support. Early intervention, including appropriate and specialized educational programs and support services, play a critical role in improving the outcome of individuals with PDD.
No medications directly treat the core symptoms of AS. Although research into the efficacy of pharmaceutical intervention for AS is limited, it is essential to diagnose and treat comorbid conditions. Deficits in self-identifying emotions or in observing effects of one's behavior on others can make it difficult for individuals with AS to see why medication may be appropriate. Medication can be effective in combination with behavioral interventions and environmental accommodations in treating comorbid symptoms such as anxiety disorder, major depressive disorder, inattention and aggression. The atypical antipsychotic medications risperidone and olanzapine have been shown to reduce the associated symptoms of AS; risperidone can reduce repetitive and self-injurious behaviors, aggressive outbursts and impulsivity, and improve stereotypical patterns of behavior and social relatedness. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine, fluvoxamine, and sertraline have been effective in treating restricted and repetitive interests and behaviors.
Care must be taken with medications, as side effects may be more common and harder to evaluate in individuals with AS, and tests of drugs' effectiveness against comorbid conditions routinely exclude individuals from the autism spectrum. Abnormalities in metabolism, cardiac conduction times, and an increased risk of type 2 diabetes have been raised as concerns with these medications, along with serious long-term neurological side effects. SSRIs can lead to manifestations of behavioral activation such as increased impulsivity, aggression, and sleep disturbance. Weight gain and fatigue are commonly reported side effects of risperidone, which may also lead to increased risk for extrapyramidal symptoms such as restlessness and dystonia and increased serum prolactin levels. Sedation and weight gain are more common with olanzapine, which has also been linked with diabetes. Sedative side-effects in school-age children have ramifications for classroom learning. Individuals with AS may be unable to identify and communicate their internal moods and emotions or to tolerate side effects that for most people would not be problematic.
The medical treatment of essential tremor at the Movement Disorders Clinic at Baylor College of Medicine begins with minimizing stress and tremorgenic drugs along with recommending a restricted intake of beverages containing caffeine as a precaution, although caffeine has not been shown to significantly intensify the presentation of essential tremor. Alcohol amounting to a blood concentration of only 0.3% has been shown to reduce the amplitude of essential tremor in two-thirds of patients; for this reason it may be used as a prophylactic treatment before events during which one would be embarrassed by the tremor presenting itself. Using alcohol regularly and/or in excess to treat tremors is highly unadvisable, as there is a purported correlation between tremor and alcoholism. Alcohol is thought to stabilize neuronal membranes via potentiation of GABA receptor-mediated chloride influx. It has been demonstrated in essential tremor animal models that the food additive 1-octanol suppresses tremors induced by harmaline, and decreases the amplitude of essential tremor for about 90 minutes.
Two of the most valuable drug treatments for essential tremor are propranolol, a beta blocker, and primidone, an anticonvulsant. Propranolol is much more effective for hand tremor than head and voice tremor. Some beta-adrenergic blockers (beta blockers) are not lipid-soluble and therefore cannot cross the blood–brain barrier (propranolol being an exception), but can still act against tremors; this indicates that this drug’s mechanism of therapy may be influenced by peripheral beta-adrenergic receptors. Primidone’s mechanism of tremor prevention has been shown significantly in controlled clinical studies. The benzodiazepine drugs such as diazepam and barbiturates have been shown to reduce presentation of several types of tremor, including the essential variety. Controlled clinical trials of gabapentin yielded mixed results in efficacy against essential tremor while topiramate was shown to be effective in a larger double-blind controlled study, resulting in both lower Fahn-Tolosa-Marin tremor scale ratings and better function and disability as compared to placebo.
It has been shown in two double-blind controlled studies that injection of botulinum toxin into muscles used to produce oscillatory movements of essential tremors, such as forearm, wrist and finger flexors, may decrease the amplitude of hand tremor for approximately three months and that injections of the toxin may reduce essential tremor presenting in the head and voice. The toxin also may help tremor causing difficulty in writing, although properly adapted writing devices may be more efficient. Due to high incidence of side effects, use of botulinum toxin has only received a C level of support from the scientific community.
Deep brain stimulation toward the ventral intermediate nucleus of the thalamus and potentially the subthalamic nucleus and caudal zona incerta nucleus have been shown to reduce tremor in numerous studies. That toward the ventral intermediate nucleus of the thalamus has been shown to reduce contralateral and some ipsilateral tremor along with tremors of the cerebellar outflow, head, resting state and those related to hand tasks; however, the treatment has been shown to induce difficulty articulating thoughts (dysarthria), and loss of coordination and balance in long-term studies. Motor cortex stimulation is another option shown to be viable in numerous clinical trials.
There are two lines of treatment for Pisa syndrome. The first line entails discontinuation or reduction in dose of the antipsychotic drug(s). The second line of treatment is an anticholinergic medication. A pharmacological therapy for Pisa syndrome caused by prolonged use of antipsychotic drugs has not been established yet.
The ideal treatment for AS coordinates therapies that address core symptoms of the disorder, including poor communication skills and obsessive or repetitive routines. While most professionals agree that the earlier the intervention, the better, there is no single best treatment package. AS treatment resembles that of other high-functioning ASDs, except that it takes into account the linguistic capabilities, verbal strengths, and nonverbal vulnerabilities of individuals with AS. A typical program generally includes:
- A positive behavior support procedure includes training and support of parents and school faculty in behavior management strategies to use in the home and school;
- An applied behavior analysis (ABA) technique called social skills training for more effective interpersonal interactions;
- Cognitive behavioral therapy to improve stress management relating to anxiety or explosive emotions and to cut back on obsessive interests and repetitive routines;
- Medication, for coexisting conditions such as major depressive disorder and anxiety disorder;
- Occupational or physical therapy to assist with poor sensory processing and motor coordination;
- Social communication intervention, which is specialized speech therapy to help with the pragmatics of the give and take of normal conversation.
Of the many studies on behavior-based early intervention programs, most are case reports of up to five participants and typically examine a few problem behaviors such as self-injury, aggression, noncompliance, stereotypies, or spontaneous language; unintended side effects are largely ignored. Despite the popularity of social skills training, its effectiveness is not firmly established. A randomized controlled study of a model for training parents in problem behaviors in their children with AS showed that parents attending a one-day workshop or six individual lessons reported fewer behavioral problems, while parents receiving the individual lessons reported less intense behavioral problems in their AS children. Vocational training is important to teach job interview etiquette and workplace behavior to older children and adults with AS, and organization software and personal data assistants can improve the work and life management of people with AS.
PKD patients usually show a good response to anticonvulsants. Most commonly used medications are sodium blockers, carbamazepine and phenytoin. During a drug-testing study, patients reported a decreasing response to the latter use of anticonvulsants and switched to carbamazepine or phenytoin. Refraining from established triggers such as sudden movement has been shown to lessen attacks occurrences. Avoidance of predisposing factors such as stress, excitement, and fatigue also help manage attacks.
Many medications are used to treat ASD symptoms that interfere with integrating a child into home or school when behavioral treatment fails. More than half of US children diagnosed with ASD are prescribed psychoactive drugs or anticonvulsants, with the most common drug classes being antidepressants, stimulants, and antipsychotics. Antipsychotics, such as risperidone and aripiprazole, have been found to be useful for treating irritability, repetitive behavior, and sleeplessness that often occurs with autism, however their side effects must be weighed against their potential benefits, and people with autism may respond atypically. There is scant reliable research about the effectiveness or safety of drug treatments for adolescents and adults with ASD. No known medication relieves autism's core symptoms of social and communication impairments. Experiments in mice have reversed or reduced some symptoms related to autism by replacing or modulating gene function, suggesting the possibility of targeting therapies to specific rare mutations known to cause autism.
Treatment for PKND is more difficult than other Paroxysmal Dyskinesias. The majority of patients experience some relief from low dosages of clonazepam, a muscle relaxant and anticonvulsant. Similar to PKD, avoidance of stress, excitement, and fatigue will lower the frequency of PNKD attacks. Many patients also avoid known methyglyoxal containing foods and beverages such as alcohol, coffee, tea, and chocolate.
The main goals when treating children with autism are to lessen associated deficits and family distress, and to increase quality of life and functional independence. In general, higher IQs are correlated with greater responsiveness to treatment and improved treatment outcomes. No single treatment is best and treatment is typically tailored to the child's needs. Families and the educational system are the main resources for treatment. Studies of interventions have methodological problems that prevent definitive conclusions about efficacy, however the development of evidence-based interventions has advanced in recent years. Although many psychosocial interventions have some positive evidence, suggesting that some form of treatment is preferable to no treatment, the methodological quality of systematic reviews of these studies has generally been poor, their clinical results are mostly tentative, and there is little evidence for the relative effectiveness of treatment options. Intensive, sustained special education programs and behavior therapy early in life can help children acquire self-care, social, and job skills, and often improve functioning and decrease symptom severity and maladaptive behaviors; claims that intervention by around age three years is crucial are not substantiated. Available approaches include applied behavior analysis (ABA), developmental models, structured teaching, speech and language therapy, social skills therapy, and occupational therapy. Among these approaches, interventions either treat autistic features comprehensively, or focalize treatment on a specific area of deficit. There is some evidence that early intensive behavioral intervention (EIBI), an early intervention model based on ABA for 20 to 40 hours a week for multiple years, is an effective treatment for some children with ASD. Two theoretical frameworks outlined for early childhood intervention include applied behavioral analysis (ABA) and developmental social pragmatic models (DSP). One interventional strategy utilizes a parent training model, which teaches parents how to implement various ABA and DSP techniques, allowing for parents to disseminate interventions themselves. Various DSP programs have been developed to explicitly deliver intervention systems through at-home parent implementation. Despite the recent development of parent training models, these interventions have demonstrated effectiveness in numerous studies, being evaluated as a probable efficacious mode of treatment.
Treatment can include behavior modification therapy, medication, and family therapy. The evidence base criteria for BFRBs is strict and methodical. Individual behavioral therapy has been shown as a "probably effective" evidence-based therapy to help with thumb sucking, and possibly nail biting. Cognitive behavioral therapy was cited as experimental evidence based therapy to treat trichotillomania and nail biting. Another form of treatment that focuses on mindfulness, stimuli and rewards has proven effective in some people. However, no treatment was deemed well-established to treat any form of BFRBs.
Prevention of tardive dyskinesia is achieved by using the lowest effective dose of a neuroleptic for the shortest time. However, with diseases of chronic psychosis such as schizophrenia, this strategy must be balanced with the fact that increased dosages of neuroleptics are more beneficial in preventing recurrence of psychosis. If tardive dyskinesia is diagnosed, the causative drug should be discontinued. Tardive dyskinesia may persist after withdrawal of the drug for months, years or even permanently. Some studies suggest that physicians should consider using atypical antipsychotics as a substitute to typical antipsychotics for patients requiring medication. These agents are associated with fewer neuromotor side effects and a lower risk of developing tardive dyskinesia.
Recent studies have tested the use of melatonin, high dosage vitamins, and different antioxidants in concurrence with antipsychotic drugs (often used to treat schizophrenia) as a way of preventing and treating tardive dyskinesia. Although further research is needed, studies reported a much lower percentage of individuals developing tardive dyskinesia than the current prevalence rate for those taking antipsychotic drugs.
Reducing the dosage of the antipsychotic drugs resulted in gradual improvement in the abnormal posture. In some cases, discontinuing the use of those drugs resulted in complete disappearance of the syndrome. The time it took for the improvement and the disappearance of the syndrome depended on the type of drug being administered or the specific cause of the syndrome itself.
Education, and a "watch and wait" strategy, are the only treatment needed for many, and the majority of individuals with tics do not seek treatment; treatment of tic disorders is similar to treatment of Tourette syndrome.
Due to the fact that PRS is such a severe disorder, it is almost always required to hospitalize in a child and adolescent psychiatric unit. Outpatient treatment does display symptom-free periods, but relapses of short-lived episodes of depressive symptoms or anorexia are observed. It is therefore necessary to partake in inpatient treatment. Treatment ought to involve gentle loving care. The person treating the patient must be very sensitive and tolerant because it takes a long period of time for the patient to get better, and putting pressure on them adds severity to their condition. It frequently takes several months of treatment before it is likely to employ a very steady rehabilitation programme.
Unfortunately, no evidence-based treatment is known for PRS. However it is widely accepted that the treatment must incorporate a complete multidisciplinary team approach and a controlled yet flexible management plan with a visible basis engaged over months to years. Recovery from pervasive refusal syndrome is slow, usually demands one year after diagnosis and introduction of treatment, but many children have a complete recovery and relapse is almost never seen. It is important to remember that adding pressure on recovery times can set him or her back.
There is no standard course of treatment for chorea. Treatment depends on the type of chorea and the associated disease. Although there are many drugs that can control it, no cure has yet been identified.
Excoriation disorder, and trichotillomania have been treated with inositol and N-acetylcysteine.