Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is supportive and based upon symptoms, with fluid and electrolyte replacement as the primary goal. Dehydration caused by diarrhea and vomiting is the most common complication. To prevent dehydration, it is important to take frequent sips of a rehydration drink (like water) or try to drink a cup of water or rehydration drink for each large, loose stool.
Dietary management of enteritis consists of starting with a clear liquid diet until vomiting and diarrhea end and then slowly introduce the BRATT diet. The BRATT diet consists of bananas, rice, applesauce, tea, and toast. It is also important to avoid foods that are high in fiber or are possibly difficult to digest.
Antibiotic treatment only has a marginal effect on the duration of symptoms, and its use is not recommended except in high-risk patients with clinical complications.
Erythromycin can be used in children, and tetracycline in adults. Some studies show, however, that erythromycin rapidly eliminates "Campylobacter" from the stool without affecting the duration of illness. Nevertheless, children with dysentery due to "C. jejuni" benefit from early treatment with erythromycin. Treatment with antibiotics, therefore, depends on the severity of symptoms. Quinolones are effective if the organism is sensitive, but high rates of quinolone use in livestock means that quinolones are now largely ineffective.
Antimotility agents, such as loperamide, can lead to prolonged illness or intestinal perforation in any invasive diarrhea, and should be avoided. Trimethoprim/sulfamethoxazole and ampicillin are ineffective against "Campylobacter".
The infection is usually self-limiting, and in most cases, symptomatic treatment by liquid and electrolyte replacement is enough in human infections.
WAD is typically self-limited, generally resolving without specific treatment. Oral rehydration therapy with rehydration salts is often beneficial to replace lost fluids and electrolytes. Clear, disinfected water or other liquids are routinely recommended.
Hikers who develop three or more loose stools in a 24-hour period – especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools – should be treated by a doctor and may benefit from antibiotics, usually given for 3–5 days. Alternatively, a single dose azithromycin or levofloxacin may be prescribed. If diarrhea persists despite therapy, travelers should be evaluated and treated for possible parasitic infection.
"Cryptosporidium" can be quite dangerous to patients with compromised immune systems. Alinia (nitazoxanide) is approved by the FDA for treatment of "Cryptosporidium".
Since wilderness acquired diarrhea can be caused by insufficient hygiene, contaminated water, and (possibly) increased susceptibility from vitamin deficiency, prevention methods should address these causes.
Staphylococcal enteritis may be avoided by using proper hygiene and sanitation with food preparation. This includes thoroughly cooking all meats. If food is to be stored longer than two hours, keep hot foods hot (over 140 °F) and cold foods cold (40 °F or under). Ensure to refrigerate leftovers promptly and store cooked food in a wide, shallow container and refrigerate as soon as possible. Sanitation is very important. Keep kitchens and food-serving areas clean and sanitized. Finally, as most staphylococcal food poisoning are the result of food handling, hand washing is critical. Food handlers should use hand sanitizers with alcohol or thorough hand washing with soap and water.
Tips for hand washing:
1. Wash hands with warm, soapy water before and after handling raw foods.
2. Always wash your hands after using the bathroom, after changing a baby's diaper, after touching pets or other animals, and after sneezing or coughing
3. Properly dress or glove.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
While antibiotics are beneficial in certain types of acute diarrhea, they are usually not used except in specific situations. There are concerns that antibiotics may increase the risk of hemolytic uremic syndrome in people infected with . In resource-poor countries, treatment with antibiotics may be beneficial. However, some bacteria are developing antibiotic resistance, particularly "Shigella". Antibiotics can also cause diarrhea, and antibiotic-associated diarrhea is the most common adverse effect of treatment with general antibiotics.
While bismuth compounds (Pepto-Bismol) decreased the number of bowel movements in those with travelers' diarrhea, they do not decrease the length of illness. Anti-motility agents like loperamide are also effective at reducing the number of stools but not the duration of disease. These agents should only be used if bloody diarrhea is not present.
Bile acid sequestrants such as cholestyramine can be effective in chronic diarrhea due to bile acid malabsorption. Therapeutic trials of these drugs are indicated in chronic diarrhea if bile acid malabsorption cannot be diagnosed with a specific test, such as SeHCAT retention.
Zinc supplementation may benefit children over six months old with diarrhea in areas with high rates of malnourishment or zinc deficiency. This supports the World Health Organization guidelines for zinc, but not in the very young.
Probiotics reduce the duration of symptoms by one day and reduced the chances of symptoms lasting longer than four days by 60%. The probiotic lactobacillus can help prevent antibiotic-associated diarrhea in adults but possibly not children. For those with lactose intolerance, taking digestive enzymes containing lactase when consuming dairy products often improves symptoms.
Amphistomiasis is considered a neglected tropical disease, with no prescription drug for treatment and control. Therefore, management of infestation is based mainly on control of the snail population, which transmit the infective larvae of the flukes. However, there are now drugs shown to be effective including resorantel, oxyclozanide, clorsulon, ivermectin, niclosamide, bithional and levamisole. An in vitro demonstration shows that plumbagin exhibits high efficacy on adult flukes. Since the juvenile flukes are the causative individuals of the disease, effective treatment means control of the immature fluke population. Prophylaxis is therefore based on disruption of the environment (such as proper drainage) where the carrier snails inhabit, or more drastic action of using molluscicides to eradicate the entire population. For treatment of the infection, drugs effective against the immature flukes are recommended for drenching. For this reason oxyclozanide is advocated as the drug of choice. It effectively kills the flukes within a few hours and it effective against the flukes resistant to other drugs. The commercially prescribed dosage is 5 mg/kg body weight or 18.7 mg/kg body weight in two divided dose within 72 hours. Niclosamide is also extensively used in mass drenching of sheep. Successfully treated sheep regain appetite within a week, diarrhoea stops in about three days, and physiological indicators (such as plasma protein and albumin levels) return to normal in a month.
"S. pneumonia" can be treated with a combination of penicillin and ampicillin.
In cases of herpes simplex virus-derived meningitis, antiviral therapy (acyclovir or vidarabine) must be started immediately for a favorable outcome. Acyclovir is a better antiviral because it shows a similar effect on the infection as vidarabine and is safer to use in the neonate. The recommended dosage is 20 mg/kg every six hours for 21 days.
Treatment of acute rotavirus infection is nonspecific and involves management of symptoms and, most importantly, maintenance of hydration. If untreated, children can die from the resulting severe dehydration. Depending on the severity of diarrhea, treatment consists of oral rehydration, during which the child is given extra water to drink that contains small amounts of salt and sugar. Some infections are serious enough to warrant hospitalisation where fluids are given by intravenous drip or nasogastric tube, and the child's electrolytes and blood sugar are monitored. Antibiotics are not recommended.
Rotavirus infections rarely cause other complications and for a well managed child the prognosis is excellent.
Antibiotics are usually prescribed, with the agent selected based on suspected organism and presence or absence of purulence, although the best treatment choice is unclear. If an abscess is also present, surgical drainage is usually indicated, with antibiotics often prescribed for co-existent cellulitis, especially if extensive. Pain relief is also often prescribed, but excessive pain should always be investigated, as it is a symptom of necrotizing fasciitis. Elevation of the affected area is often recommended.
Steroids may speed recovery in those on antibiotics.
The mainstay of treatment for SSSS is supportive care along with eradication of the primary infection. Conservative measures include rehydration, antipyretics (e.g., ibuprofen, aspirin, and paracetamol), management of thermal burns, and stabilization. Parenteral antibiotics to cover "S. aureus" should be administered. Most strains of "S. aureus" implicated in SSSS have penicillinases, and are therefore penicillin resistant. Therefore, treatment with Nafcillin, oxacillin, or vancomycin is typically indicated. Clindamycin is sometimes also used because of its inhibition of exotoxins.
Antibiotics choices depend on regional availability, but a penicillinase-resistant semisynthetic penicillin or a first-generation cephalosporin is currently recommended for cellulitis without abscess. A course of antibiotics is not effective in between 6 and 37% of cases.
Large doses of glucocorticoids are the treatment of choice, and are administered until the signs have resolved. In uncomplicated cases, this can take up to a month. If dogs are not treated promptly and with high doses of steroids, severe scarring may occur. If there is evidence of secondary bacterial infection, treatment with antibiotics is required.
High-dose antibiotics are administered by the intravenous route to maximize diffusion of antibiotic molecules into vegetation(s) from the blood filling the chambers of the heart. This is necessary because neither the heart valves nor the vegetations adherent to them are supplied by blood vessels. Antibiotics are typically continued for two to six weeks depending on the characteristics of the infection and the causative microorganisms.
In acute endocarditis, due to the fulminant inflammation empirical antibiotic therapy is started immediately after the blood has been drawn for culture. This usually includes vancomycin and ceftriaxone IV infusions until the microbial identification and susceptibility report with the minimum inhibitory concentration becomes available allowing for modification of the antimicrobial therapy to target the specific microorganism. It should be noted that the routine use of gentamicin to treat endocarditis has fallen out of favor due to the lack of evidence to support its use (except in infections caused by "Enterococcus" and nutritionally variant "streptococci") and the high rate of complications.
In subacute endocarditis, where patient's hemodynamic status is usually stable, antibiotic treatment can be delayed till the causative microorganism can be identified.
The most common organism responsible for infective endocarditis is "Staphylococcus aureus", which is resistant to penicillin in most cases. High rates of resistance to oxacillin are also seen, in which cases treatment with vancomycin is required.
Viridans group "streptococci" and "Streptococcus bovis" are usually highly susceptible to penicillin and can be treated with penicillin or ceftriaxone.
Relatively resistant strains of viridans group "streptococci" and "Streptococcus bovis" are treated with penicillin or ceftriaxone along with a shorter 2 week course of an aminoglycoside during the initial phase of treatment.
Highly penicillin resistant strains of viridans group "streptococci", nutritionally variant "streptococci" like "Granulicatella sp.", "Gemella sp." and "Abiotrophia defectiva", and "Enterococci" are usually treated with a combination therapy consisting of penicillin and an aminoglycoside for the entire duration of 4–6 weeks.
Selected patients may be treated with a relatively shorter course of treatment (2 weeks) with benzyl penicillin IV if infection is caused by viridans group "streptococci" or "Streptococcus bovis" as long as the following conditions are met:
- Endocarditis of a native valve, not of a prosthetic valve
- An MIC ≤ 0.12 mg/l
- Complication such as heart failure, arrhythmia, and pulmonary embolism occur
- No evidence of extracardiac complication like septic thromboembolism
- No vegetations > 5mm in diameter conduction defects
- Rapid clinical response and clearance of blood stream infection
Additionally oxacillin susceptible "Staphylococcus aureus" native valve endocarditis of the right side can also be treated with a short 2 week course of a beta-lactam antibiotic like nafcillin with or without aminoglycosides.
Surgical debridement of infected material and replacement of the valve with a mechanical or bioprosthetic artificial heart valve is necessary in certain situations:
- Patients with significant valve stenosis or regurgitation causing heart failure
- Evidence of hemodynamic compromise in the form of elevated end-diastolic left ventricular or left atrial pressure or moderate to severe pulmonary hypertension
- Presence of intracardiac complications like paravalvular abscess, conduction defects or destructive penetrating lesions
- Recurrent septic emboli despite appropriate antibiotic treatment
- Large vegetations (> 10 mm)
- Persistently positive blood cultures despite appropriate antibiotic treatment
- Prosthetic valve dehiscence
- Relapsing infection in the presence of a prosthetic valve
- Abscess formation
- Early closure of mitral valve
- Infection caused by fungi or resistant Gram negative bacteria.
The guidelines were recently updated by both the American College of Cardiology and the European Society of Cardiology. There was a recent meta-analysis published that showed surgical intervention at 7 days or less is associated with lower mortality .
Infective endocarditis is associated with 18% in-hospital mortality.
Antibiotic creams are the preferred treatment for mild cases of impetigo, despite their limited systemic absorption. Such prescribed ointments include neosporin, fusidic acid, chloramphenicol and mupirocin. More severe cases of impetigo however (especially bullous impetigo) will likely require oral agents with better systemic bioavailability, such as cephalexin. Cases that do not resolve with initial antibiotic therapy or require hospitalization may also be indicative an MRSA infection, which would require the use of agents specifically able to treat it, such as clindamycin.
Antibiotic treatment typically last 7–10 days, and although highly effective some cases of methicillin resistant S. aureus (MRSA) may require longer therapy depending on the severity of infection and how much it has spread.
Proximal enteritis usually is managed medically. This includes nasogastric intubation every 1–2 hours to relieve gastric pressure secondary to reflux, which often produces to 2–10 L, as well as aggressive fluid support to maintain hydration and correct electrolyte imbalances. Maintaining hydration in these patients can be very challenging. In some cases, fluid support may actually increase reflux production, due to the decreased intravascular oncotic pressure from low total protein and albumin levels, leading to loss of much of these IV fluids into the intestinal lumen. These horses will often display dependent edema (edema that collects in locations based on gravity). Colloids such as plasma or Hetastarch may be needed to improve intravascular oncotic pressure, although they can be cost prohibitive for many owners. Reflux levels are monitored closely to help evaluate fluid losses, and horses recovering from DPJ show improved hydration with decreased reflux production and improved attitude.
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for pain relief, reduction of inflammation, and for their anti-endotoxin effects, but care must be taken since they may produce gastrointestinal ulceration and damage the kidneys. Due to a suspected link to "Clostridial" infection, anti-microbials are often administered, usually penicillin or metronidazole. Aminoglycosides should be used with extreme caution due to the risk of nephrotoxicosis (damage to the kidney). The mucosa of the intestines is damaged with DPJ, often resulting in absorption of endotoxin and risking laminitis, so therapy to combat and treat endotoxemia is often employed. This includes treatment with drugs that counteract endotoxin such as Polymyxin B and Bio-Sponge, fluid support, and laminitis prevention such as icing of the feet. Prokinetic drugs such as lidocaine, erythromycin, metoclopramide, and bethanechol are often used to treat the ileus associated with the disease.
Horses are withheld food until reflux returns to less than 1–2 L of production every 4 hours, and gut sounds return, often requiring 3–7 days of therapy. Parenteral nutrition is often provided to horses that are withheld feed for greater than 3–4 days. It is suspected to improve healing and shorten the duration of the illness, since horses often become cachexic due to the protein losing enteropathy associated with this disease.
Surgery may need to be performed to rule out colic with similar presenting signs such as obstruction or strangulation, and in cases that are long-standing (> 7 days) to perform a resection and anastomosis of the diseased bowel. However, some horses have recovered with long-term medical support (up to 20 days).
The severity of this disease frequently warrants hospitalization. Admission to the intensive care unit is often necessary for supportive care (for aggressive fluid management, ventilation, renal replacement therapy and inotropic support), particularly in the case of multiple organ failure. The source of infection should be removed or drained if possible: abscesses and collections should be drained. Anyone wearing a tampon at the onset of symptoms should remove it immediately. Outcomes are poorer in patients who do not have the source of infection removed.
Antibiotic treatment should cover both "S. pyogenes" and "S. aureus". This may include a combination of cephalosporins, penicillins or vancomycin. The addition of clindamycin or gentamicin reduces toxin production and mortality.
In addition to fluid support, impactions are often treated with intestinal lubricants and laxatives to help move the obstruction along. Mineral oil is the most commonly used lubricant for large colon impactions, and is administered via nasogastric tube, up to 4 liters once or twice daily. It helps coat the intestine, but is not very effective for severe impactions or sand colic since it may simply bypass the obstruction. Mineral oil has the added benefit of crudely measuring GI transit time, a process which normally takes around 18 hours, since it is obvious when it is passed. The detergent dioctyl sodium sulfosuccinate (DDS) is also commonly given in oral fluids. It is more effective in softening an impaction than mineral oil, and helps stimulate intestinal motility, but can inhibit fluid absorption from the intestine and is potentially toxic so is only given in small amounts, two separate times 48 hours apart. Epsom salts are also useful for impactions, since they act both as an osmotic agent, to increase fluid in the GI tract, and as a laxative, but do run the risk of dehydration and diarrhea. Strong laxatives are not recommended for treating impactions.
Endotoxemia is a serious complication of colic and warrants aggressive treatment. Endotoxin (lipopolysaccharide) is released from the cell wall of gram-negative bacteria when they die. Normally, endotoxin is prevented from entering systemic circulation by the barrier function of the intestinal mucosa, antibodies and enzymes which bind and neutralize it and, for the small amount that manages to enter the blood stream, removal by Kupffer cells in the liver. Endotoxemia occurs when there is an overgrowth and secondary die-off of gram negative bacteria, releasing mass quantities of endotoxin. This is especially common when the mucosal barrier is damaged, as with ischemia of the GI tract secondary to a strangulating lesion or displacement. Endotoxemia produces systemic effects such as cardiovascular shock, insulin resistance, and coagulation abnormalities.
Fluid support is essential to maintain blood pressure, often with the help of colloids or hypertonic saline. NSAIDs are commonly given to reduce systemic inflammation. However, they decrease the levels of certain prostaglandins that normally promote healing of the intestinal mucosa, which subsequently increases the amount of endotoxin absorbed. To counteract this, NSAIDs are sometimes administered with a lidocaine drip, which appears to reduce this particular negative effect. Flunixin may be used for this purpose at a dose lower than that used for analgesia, so can be safely given to a colicky horse without risking masking signs that the horse requires surgery. Other drugs that bind endotoxin, such as polymyxin B and Bio-Sponge, are also often used. Polymixin B prevents endotoxin from binding to inflammatory cells, but is potentially nephrotoxic, so should be used with caution in horses with azotemia, especially neonatal foals. Plasma may also be given with the intent of neutralizing endotoxin.
Laminitis is a major concern in horses suffering from endotoxemia. Ideally, prophylactic treatment should be provided to endotoxic horses, which includes the use of NSAIDs, DMSO, icing of the feet, and frog support. Horses are also sometimes administered heparin, which is thought to reduce the risk of laminitis by decreasing blood coagulability and thus blood clot formation in the capillaries of the foot.