Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Initial measures can include rest, caffeine intake (via coffee or intravenous infusion), and hydration. Corticosteroids may provide transient relief for some patients. An abdominal binder — a type of garment that increases intracranial pressure by compressing the abdomen — can temporarily relieve symptoms for some people.
The treatment of choice for this condition is the surgical application of epidural blood patches, which has a higher success rate than conservative treatments of bed rest and hydration. Through the injection of a person's own blood into the area of the hole in the dura, an epidural blood patch uses blood's clotting factors to clot the sites of holes. The volume of autologous blood and number of patch attempts for patients is highly variable. One-quarter to one-third of SCSFLS patients do not have relief of symptoms from epidural blood patching.
The best-studied medical treatment for intracranial hypertension is acetazolamide (Diamox), which acts by inhibiting the enzyme carbonic anhydrase, and it reduces CSF production by six to 57 percent. It can cause the symptoms of hypokalemia (low blood potassium levels), which include muscle weakness and tingling in the fingers. Acetazolamide cannot be used in pregnancy, since it has been shown to cause embryonic abnormalities in animal studies. Also, in human beings it has been shown to cause metabolic acidosis as well as disruptions in the blood electrolyte levels of newborn babies. The diuretic furosemide is sometimes used for a treatment if acetazolamide is not tolerated, but this drug sometimes has little effect on the ICP.
Various analgesics (painkillers) may be used in controlling the headaches of intracranial hypertension. In addition to conventional agents such as paracetamol, a low dose of the antidepressant amitriptyline or the anticonvulsant topiramate have shown some additional benefit for pain relief.
The use of steroids in the attempt to reduce the ICP is controversial. These may be used in severe papilledema, but otherwise their use is discouraged.
The first step in symptom control is drainage of cerebrospinal fluid by lumbar puncture. If necessary, this may be performed at the same time as a diagnostic LP (such as done in search of a CSF infection). In some cases, this is sufficient to control the symptoms, and no further treatment is needed.
The procedure can be repeated if necessary, but this is generally taken as a clue that additional treatments may be required to control the symptoms and preserve vision. Repeated lumbar punctures are regarded as unpleasant by patients, and they present a danger of introducing spinal infections if done too often. Repeated lumbar punctures are sometimes needed to control the ICP urgently if the patient's vision deteriorates rapidly.
Most arachnoid cysts are asymptomatic and do not require treatment. Treatment may be necessary when symptomatic. A variety of procedures may be used to decompress (remove pressure from) the cyst.
- Surgical placement of a cerebral shunt:
- An internal shunt drains into the subdural compartment.
- A cystoperitoneal shunt drains to the peritoneal cavity.
- Craniotomy with excision
- Various endoscopic techniques are proving effective, including laser-assisted techniques.
- Drainage by needle aspiration or burr hole.
- Capsular resection
- Pharmacological treatments may address specific symptoms such as seizures or pain.
Management involves general measures to stabilize the person while also using specific investigations and treatments. These include the prevention of rebleeding by obliterating the bleeding source, prevention of a phenomenon known as vasospasm, and prevention and treatment of complications.
Stabilizing the person is the first priority. Those with a depressed level of consciousness may need to be intubated and mechanically ventilated. Blood pressure, pulse, respiratory rate, and Glasgow Coma Scale are monitored frequently. Once the diagnosis is confirmed, admission to an intensive care unit may be preferable, especially since 15 percent may have further bleeding soon after admission. Nutrition is an early priority, with by mouth or nasogastric tube feeding being preferable over parenteral routes. In general, pain control is restricted to less-sedating agents such as codeine, as sedation may impact on the mental status and thus interfere with the ability to monitor the level of consciousness. Deep vein thrombosis is prevented with compression stockings, intermittent pneumatic compression of the calves, or both. A bladder catheter is usually inserted to monitor fluid balance. Benzodiazepines may be administered to help relieve distress. Antiemetic drugs should be given to awake persons.
People with poor clinical grade on admission, acute neurologic deterioration, or progressive enlargement of ventricles on CT scan are, in general, indications for the placement of an external ventricular drain by a neurosurgeon. The external ventricular drain may be inserted at the bedside or in the operating room. In either case, strict aseptic technique must be maintained during insertion. In people with aneurysmal subarachnoid hemorrhage the EVD is used to remove cerebrospinal fluid, blood, and blood byproducts that increase intracranial pressure and may increase the risk for cerebral vasospasm.
Vasospasm, in which the blood vessels constrict and thus restrict blood flow, is a serious complication of SAH. It can cause ischemic brain injury (referred to as "delayed ischemia") and permanent brain damage due to lack of oxygen in parts of the brain. It can be fatal if severe. Delayed ischemia is characterized by new neurological symptoms, and can be confirmed by transcranial doppler or cerebral angiography. About one third of people admitted with subarachnoid hemorrhage will have delayed ischemia, and half of those have permanent damage as a result. It is possible to screen for the development of vasospasm with transcranial Doppler every 24–48 hours. A blood flow velocity of more than 120 centimeters per second is suggestive of vasospasm.
The use of calcium channel blockers, thought to be able to prevent the spasm of blood vessels by preventing calcium from entering smooth muscle cells, has been proposed for prevention. The calcium channel blocker nimodipine when taken by mouth improves outcome if given between the fourth and twenty-first day after the bleeding, even if it does not reduce the amount of vasospasm detected on angiography. It is the only Food and Drug Administration (FDA) approved drug for treating cerebral vasospasm. In "traumatic" subarachnoid hemorrhage, nimodipine does not affect long-term outcome, and is not recommended. Other calcium channel blockers and magnesium sulfate have been studied, but are not presently recommended; neither is there any evidence that shows benefit if nimodipine is given intravenously.
Some older studies have suggested that statin therapy might reduce vasospasm, but a subsequent meta-analysis including further trials did not demonstrate benefit on either vasospasm or outcomes. While corticosteroids with mineralocorticoid activity may help prevent vasospasm their use does not appear to change outcomes.
A protocol referred to as "triple H" is often used as a measure to treat vasospasm when it causes symptoms; this is the use of intravenous fluids to achieve a state of hypertension (high blood pressure), hypervolemia (excess fluid in the circulation), and hemodilution (mild dilution of the blood). Evidence for this approach is inconclusive; no randomized controlled trials have been undertaken to demonstrate its effect.
If the symptoms of delayed ischemia do not improve with medical treatment, angiography may be attempted to identify the sites of vasospasms and administer vasodilator medication (drugs that relax the blood vessel wall) directly into the artery. Angioplasty (opening the constricted area with a balloon) may also be performed.
Treatment of a subdural hematoma depends on its size and rate of growth. Some small subdural hematomas can be managed by careful monitoring until the body heals itself. Other small subdural hematomas can be managed by inserting a temporary small catheter through a hole drilled through the skull and sucking out the hematoma; this procedure can be done at the bedside. Large or symptomatic hematomas require a craniotomy, the surgical opening of the skull. A surgeon then opens the dura, removes the blood clot with suction or irrigation, and identifies and controls sites of bleeding. Postoperative complications include increased intracranial pressure, brain edema, new or recurrent bleeding, infection, and seizure. The injured vessels must be repaired.
Depending on the size and deterioration, age of the patient, and anaesthetic risk posed, subdural hematomas occasionally require craniotomy for evacuation; most frequently, simple burr holes for drainage; often conservative treatment; and rarely, palliative treatment in patients of extreme age or with no chance of recovery.
In those with a chronic subdural hematoma, but without a history of seizures, the evidence is unclear if using anticonvulsants is harmful or beneficial.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.
A cerebrospinal fluid leak (CSFL) is a medical condition where the cerebrospinal fluid(CSF) in the brain leaks out of the dura mater. This can be due to a spontaneous cerebrospinal fluid leak or result from different causes such as a lumbar puncture or physical trauma. While high CSF pressure can make lying down unbearable, low CSF pressure due to a leak can be relieved by lying flat on the back.
The most common symptoms of a CSFL is extremely high pressure in the head when sitting, standing, or bending down which can be lessened by laying down flat.
A myelogram can be used to help identify a CSFL by injecting a dye to further enhance the imaging allowing the location of the leak to be found. If it is a slow leak it may not appear on a single myelogram so more than one may be needed. Due to the ease of the procedure no anesthesia is used however a local anesthetic is given.
An epidural blood patch is the normal treatment for a CSFL, the patient's blood is drawn and it is then injected into the lumbar spine. Patients are told to lie flat without moving from 2 to 24 hours after the blood patch is done. A blood patch can be used to patch a CSFL in the cervical neck although it is rare for it to be done in that location, though it may take more than one blood patch to fully close the leak. Anesthesia is also uncommon for blood patch procedures. If you have a low pain tolerance it would be a good idea to have anesthesia for all of the procedures.
If the leak is strong or fast, the loss of CSF fluid can cause the brain to drop inside the skull due to the body's inability to replenish the CSF fluid at a quick enough pace, which would show up on a MRI of the brain. This is called a Chiari malformation where the brain is lower in the skull almost in the spinal canal.
Most arachnoid cysts are asymptomatic, and do not require treatment. Where complications are present, leaving arachnoid cysts untreated, may cause permanent severe neurological damage due to the progressive expansion of the cyst(s) or hemorrhage (bleeding). However, with treatment most individuals with symptomatic arachnoid cysts do well.
More specific prognoses are listed below:
- Patients with impaired preoperative cognition had postoperative improvement after surgical decompression of the cyst.
- Surgery can resolve psychiatric manifestations in selected cases.
Surgery is not always recommended for syringomyelia patients. For many patients, the main treatment is analgesia. Physicians specializing in pain management can develop a medication and treatment plan to ameliorate pain. Medications to combat any neuropathic pain symptoms such as shooting and stabbing pains (e.g. gabapentin or pregabalin) would be first-line choices. Opiates are usually prescribed for pain for management of this condition. Facet injections are not indicated for treatment of syringomyelia.
Drugs have no curative value as a treatment for syringomyelia. Radiation is used rarely and is of little benefit except in the presence of a tumor. In these cases, it can halt the extension of a cavity and may help to alleviate pain.
In the absence of symptoms, syringomyelia is usually not treated. In addition, a physician may recommend not treating the condition in patients of advanced age or in cases where there is no progression of symptoms. Whether treated or not, many patients will be told to avoid activities that involve straining.
Since the natural history of syringomyelia is poorly understood, a conservative approach may be recommended. When surgery is not yet advised, patients should be carefully monitored. Periodic MRI's and physical evaluations should be scheduled at the recommendation of a qualified physician.
The first step after diagnosis is finding a neurosurgeon who is experienced in the treatment of syringomyelia. Surgery is the treatment for syringomyelia. Evaluation of the condition is necessary because syringomyelia can remain stationary for long periods of time, and in some cases progress rapidly.
Surgery of the spinal cord has certain characteristic risks associated with it, and the benefits of a surgical procedure on the spine have to be weighed against the possible complications associated with any procedure. Surgical treatment is aimed at correcting the condition that allowed the syrinx to form. It is vital to bear in mind that the drainage of a syrinx does not necessarily mean the elimination of the syrinx-related symptoms but rather is aimed at stopping progression. In cases involving an Arnold-Chiari malformation, the main goal of surgery is to provide more space for the cerebellum at the base of the skull and upper cervical spine without entering the brain or spinal cord. This often results in flattening or disappearance of the primary syrinx or cavity, over time, as the normal flow of cerebrospinal fluid is restored. If a tumor is causing syringomyelia, removal of the tumor is the treatment of choice, if this is considered to be safe.
Surgery results in stabilization or modest improvement in symptoms for most patients. Delay in treatment may result in irreversible spinal cord injury. Recurrence of syringomyelia after surgery may make additional operations necessary; these may not be completely successful over the long term.
In some patients it may also be necessary to drain the syrinx, which can be accomplished using a catheter, drainage tubes, and valves. This system is also known as a shunt. Shunts are used in both the communicating and noncommunicating forms of the disorder. First, the surgeon must locate the syrinx. Then, the shunt is placed into it with the other end draining cerebrospinal fluid (CSF) into a cavity, usually the abdomen. This type of shunt is called a ventriculoperitoneal shunt and is particularly useful in cases involving hydrocephalus. By draining syrinx fluid, a shunt can arrest the progression of symptoms and relieve pain, headache, and tightness. Syringomyelia shunts are not always successful and can become blocked as with other central nervous system shunts.
The decision to use a shunt requires extensive discussion between doctor and patient, as this procedure carries with it greater risk of injury to the spinal cord, infection, blockage, or hemorrhage and may not necessarily work for all patients. Draining the syrinx more quickly does not produce better outcomes, but a shunt may be required if the fluid in the syrinx is otherwise unable to drain.
In the case of trauma-related syringomyelia, the surgeon operates at the level of the initial injury. The syrinx collapses at surgery, but a tube or shunt is usually necessary to prevent re-expansion.
Treatment of THS includes immunosuppressives such as corticosteroids (often prednisolone) or steroid-sparing agents (such as methotrexate or azathioprine).
Radiotherapy has also been proposed.
The type of treatment needed for dogs diagnosed with CM/SM depends on the severity of the condition and the age of the dog. Young dogs with clinical signs should be considered for surgical removal to minimize the progression of the disease as the dog ages. Older dogs with little or no clinical signs may be treated medically, rather than surgically. However, severe cases of CM/SM may require surgery regardless of age. The goal of surgery is syrynx decompression through restoration of normal cerebrospinal fluid circulation.
The surgical treatment of CM in dogs is described as "foramen magnum decompression FMD". Despite an approximately 80% success rate with this surgical technique, there is a 25% to 50% relapse, primarily due to excessive scar tissue formation at the decompression site. A cranioplasty may be performed instead, in which a plate, constructed using titanium mesh and bone cement, is fixed to the back of the skull following a standard FMD procedure. The procedure had been effective in humans. The postoperative relapse rate associated with the titanium cranioplasty procedure is less than 7%.
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
Because of the unclear pathogenesis and pathophysiology of Tarlov cysts, there is no consensus on the optimal treatment of symptomatic sacral perineural cysts. Patients often choose to pursue treatment when the progression of neurological deficits seriously impacts their quality of life.
Since cysts are innervated, microfenestration and surgical sleeving of the cysts to diminish the amount of accumulated cerebrospinal fluid and decrease compression of the spine and spinal nerves has been successful in a number of patients. The cysts are carefully separated enough from surrounding tissue to be wrapped with fatty tissue or pericardial biomaterial to excise the fluid from the cyst. If the cyst does not drain spontaneously, then it is drained and patched using a biosynthetic dural patch.
The use of this technique is done in the U.S. and is spreading in Europe but recovery is generally extensive. Microfenestration alone has been done with some success in Asia.
A biopolymer plate is also being used experimentally to strengthen a sacrum thinned by cystic erosion by Dr. Frank Feigenbaum.
The risks of CSF leakage are higher on patients that have bilateral cysts on the same spinal level or clusters of cysts along multiple vertebrae, but immediate recognition of the leakage and repair can mitigate that risk.
Various treatment methods have been tried in the past, including the extraction of cerebrospinal fluids from the cyst, fibrin glue injection and the complete or partial removal of cyst. Epidurals can provide temporary relief but are not generally recommended as they can cause cysts to enlarge. Extraction of fluid can provide limited or no relief depending on rate the cysts refill and the need to repeat the procedure. Removal of the cyst results in irreversible damage to the intersecting spinal nerve.
Although fibrin-glue therapy initially had been thought to be a promising therapy in the treatment of these cysts, there have been multiple problems associated with the fibrin glue therapy including seepage of fibrin. It is no longer recommended for use at present by the Health Department in some countries and neurosurgeons previously performing the procedures.
Nevertheless, all types of surgical treatment pose common risks, including neurological deficits, infection and inflammation, spinal headache, urinary disturbances, and leakage of cerebrospinal fluids.
Here is an article for treatment of meningeal diverticulum. Feigenbaum F1, Henderson FC. Giant sacral meningeal diverticula: surgical implications of the "thecal tip" sign. Report of two cases. J Neurosurg Spine. 2006 Nov;5(5):443-6.
The prognosis of THS is usually considered good. Patients usually respond to corticosteroids, and spontaneous remission can occur, although movement of ocular muscles may remain damaged. Roughly 30–40% of patients who are treated for THS experience a relapse.
Although surgery is the treatment of choice, it must be preceded by imaging studies to exclude an intracranial connection. Potential complications include meningitis and a cerebrospinal fluid leak. Recurrences or more correctly persistence may be seen in up to 30% of patients if not completely excised.
Hydrocephalus can be successfully treated by placing a drainage tube (shunt) between the brain ventricles and abdominal cavity. There is some risk of infection being introduced into the brain through these shunts, however, and the shunts must be replaced as the person grows. A subarachnoid hemorrhage may block the return of CSF to the circulation.
This should be distinguished from external hydrocephalus. This is a condition generally seen in infants and involving enlarged fluid spaces or subarachnoid spaces around the outside of the brain. This is generally a benign condition that resolves spontaneously by 2 years of age. (Greenberg, Handbook of Neurosurgery, 5th Edition, pg 174). Imaging studies and a good medical history can help to differentiate external hydrocephalus from subdural hemorrhages or symptomatic chronic extra-axial fluid collections which are accompanied by vomiting, headaches and seizures.
Hydrocephalus treatment is surgical, creating a way for the excess fluid to drain away. In the short term, an external ventricular drain (EVD), also known as an extraventricular drain or ventriculostomy, provides relief. In the long term, some patients will need any of various types of cerebral shunt. It involves the placement of a ventricular catheter (a tube made of silastic) into the cerebral ventricles to bypass the flow obstruction/malfunctioning arachnoidal granulations and drain the excess fluid into other body cavities, from where it can be resorbed. Most shunts drain the fluid into the peritoneal cavity (ventriculo-peritoneal shunt), but alternative sites include the right atrium (ventriculo-atrial shunt), pleural cavity (ventriculo-pleural shunt), and gallbladder. A shunt system can also be placed in the lumbar space of the spine and have the CSF redirected to the peritoneal cavity (Lumbar-peritoneal shunt). An alternative treatment for obstructive hydrocephalus in selected patients is the endoscopic third ventriculostomy (ETV), whereby a surgically created opening in the floor of the third ventricle allows the CSF to flow directly to the basal cisterns, thereby shortcutting any obstruction, as in aqueductal stenosis. This may or may not be appropriate based on individual anatomy. For infants, ETV is sometimes combined with choroid plexus cauterization, which reduces the amount of cerebrospinal fluid produced by the brain. The technique, known as ETV/CPC was pioneered in Uganda by neurosurgeon Ben Warf and is now in use in several U.S. hospitals.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
There is no current cure for superficial siderosis, only treatments to help alleviate the current symptoms and to help prevent the development of further symptoms. If a source of bleeding can be identified (sources are frequently not found), then surgical correction of the bleeding source can be performed; this has proved to be effective in halting the development of further symptoms in some cases and has no effect on symptoms that have already presented.
Patients with superficial siderosis are often treated with deferiprone, a lipid-soluble iron chelator, as this medication has been demonstrated to chelate iron in the central nervous system.
While on this drug you will need a frequent blood test (weekly) to keep an eye on the blood levels as this drug is known to lower certain blood levels such as the neutrophils and WBC (white blood count) and etc. While it is ok if these levels go low in the average person, if they go low while taking Deferiprone Ferriprox it can cause life threatening infections that can result in death.
Alleviation of the most common symptom, hearing loss, has been varyingly successful through the use of cochlear implants. Most people do not notice a large improvement after successful implantation, which is most likely due to damage to the vestibulocochlear nerve (cranial nerve VIII) and not the cochlea itself. Some people fare far better, with a return to near normal hearing, but there is little ability to detect how well a person will respond to this treatment at this time.
There are three modalities of surgical treatment (excision) depending on where the anatomical location of the incision to access the tumor is made: retrosigmoid (a variant of what was formerly called suboccipital), translabyrinthine, and middle fossa.
The goals of surgery are to control the tumor, and preserve hearing as well as facial nerves. Especially in the case of larger tumors, there may be a tradeoff between tumor removal and preservation of nerve functionality.
There are different defined degrees of surgical excision, termed 'subtotal resection', 'radical subtotal resection', 'near-total resection', and 'total resection' in order or increasing proportion of tumor removed. Lesser amount of tumor removal may increase likelihood of preservation of nerve function (hence better post-operative hearing), but also likelihood of tumor regrowth, necessitating additional treatment.
A pseudomeningocele is an abnormal collection of cerebrospinal fluid (CSF) that communicates with the CSF space around the brain or spinal cord. In contrast to a meningocele, in which the fluid is surrounded and confined by dura mater, in a pseudomeningocele, the fluid has no surrounding membrane, but is contained in a cavity within the soft tissues.
Pseudomeningocele may result after brain surgery, spine surgery, or brachial plexus avulsion injury.
Treatment for pseudomeningocele is conservative or may involve neurosurgical repair.
In terms of management, unless the syndrome results in other medical problems, treatment for endocrine dysfunction associated with pituitary malfunction is symptomatic and thus supportive;however, in some cases, surgery may be needed.