Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The addition of a prokinetic drug to an antibiotic regime reduces the incidence of spontaneous bacterial peritonitis possibly via decreasing small intestinal bacterial overgrowth.
Cefotaxim s DOC. After confirmation of SBP, patients need hospital admission for intravenous antibiotics. They will often also receive intravenous albumin. A repeat paracentesis in 48 hours is sometimes performed to ensure control of infection. Once patients have recovered from SBP, they require regular prophylactic antibiotics as long as they still have ascites.
Depending on the severity of the patient's state, the management of peritonitis may include:
- General supportive measures such as vigorous intravenous rehydration and correction of electrolyte disturbances.
- Antibiotics are usually administered intravenously, but they may also be infused directly into the peritoneum. The empiric choice of broad-spectrum antibiotics often consist of multiple drugs, and should be targeted against the most likely agents, depending on the cause of peritonitis (see above); once one or more agents are actually isolated, therapy will of course be target on them.
- Gram positive and gram negative organisms must be covered. Out of the cephalosporins, cefoxitin and cefotetan can be used to cover gram positive bacteria, gram negative bacteria, and anaerobic bacteria. Beta-lactams with beta lactamase inhibitors can also be used, examples include ampicillin/sulbactam, piperacillin/tazobactam, and ticarcillin/clavulanate. Carbapenems are also an option when treating primary peritonitis as all of the carbapenems cover gram positives, gram negatives, and anaerobes except for ertapenem. The only fluoroquinolone that can be used is moxifloxacin because this is the only fluoroquinolone that covers anaerobes. Finally, tigecycline is a tetracycline that can be used due to its coverage of gram positives and gram negatives. Empiric therapy will often require multiple drugs from different classes.
- Surgery (laparotomy) is needed to perform a full exploration and lavage of the peritoneum, as well as to correct any gross anatomical damage that may have caused peritonitis. The exception is spontaneous bacterial peritonitis, which does not always benefit from surgery and may be treated with antibiotics in the first instance.
Exudative ascites generally does not respond to manipulation of the salt balance or diuretic therapy. Repeated paracentesis and treatment of the underlying cause is the mainstay of treatment.
Complications involve portal vein thrombosis and splenic vein thrombosis: clotting of blood affects the hepatic portal vein or varices associated with splenic vein. This can lead to portal hypertension and reduction in blood flow. When a liver cirrhosis patient is suffering from thrombosis, it is not possible to perform a liver transplant, unless the thrombosis is very minor. In case of minor thrombosis, there are some chances of survival using cadaveric liver transplant.
Typhlitis is a medical emergency and requires prompt management. Untreated typhlitis has a poor prognosis, particularly if associated with pneumatosis intestinalis (air in the bowel wall) and/or bowel perforation, and has significant morbidity unless promptly recognized and aggressively treated.
Successful treatment hinges on:
1. Early diagnosis provided by a high index of suspicion and the use of CT scanning
2. Nonoperative treatment for uncomplicated cases
3. Empiric antibiotics, particularly if the patient is neutropenic or at other risk of infection.
In rare cases of prolonged neutropenia and complications such as bowel perforation, neutrophil transfusions can be considered but have not been studied in a randomized control trial. Elective right hemicolectomy may be used to prevent recurrence but is generally not recommended
"...The authors have found nonoperative treatment highly effective in patients who do not manifest signs of peritonitis, perforation, gastrointestinal hemorrhage, or clinical deterioration. Recurrent typhlitis was frequent after conservative therapy (recurrence rate, 67 percent), however," as based on studies from the 1980s
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
If properly treated, typical cases of surgically correctable peritonitis (e.g., perforated peptic ulcer, appendicitis, and diverticulitis) have a mortality rate of about <10% in otherwise healthy patients. The mortality rate rises to about 40% in the elderly, or in those with significant underlying illness, as well as cases that present late (after 48 hours).
Without being treated, generalised peritonitis almost always causes death. The stage magician Harry Houdini died this way, having contracted streptococcus peritonitis after his appendix ruptured and was removed too late to prevent spread of the infection.
If the condition does not improve, the risk of death is significant. In case of poor response to conservative therapy, a colectomy is usually required.
The objective of treatment is to decompress the bowel and to prevent swallowed air from further distending the bowel. If decompression is not achieved or the patient does not improve within 24 hours, a colectomy (surgical removal of all or part of the colon) is indicated. When surgery is required the recommended procedure is a subtotal colectomy with end ileostomy. Fluid and electrolyte replacement help to prevent dehydration and shock. Use of corticosteroids may be indicated to suppress the inflammatory reaction in the colon if megacolon has resulted from active inflammatory bowel disease. Antibiotics may be given to prevent sepsis.
Acute appendicitis is typically managed by surgery. However, in uncomplicated cases, antibiotics are effective and safe. While antibiotics are effective for treating uncomplicated appendicitis, 26% of people had a recurrence within a year and required eventual appendectomy. They work less well if an appendicolith is present. Cost effectiveness of surgery versus antibiotics is unclear.
Treatment for TOA differs from PID in that some clinicians recommend patients with tubo-ovarian abscesses have at least 24 hours of inpatient parenteral treatment with antibiotics, and that they may require surgery. If surgery becomes necessary, pre-operative administration of broad-spectrum antibiotics is started and removal of the abscess, the affected ovary and fallopian tube is done. After discharge from the hospital, oral antibiotics are continued for the length of time prescribed by the physician.
Treatment is different if the TOA is discovered before it ruptures and can be treated with IV antibiotics. During this treatment, IV antibiotics are usually replaced with oral antibiotics on an outpatient basis. Patients are usually seen three days after hospital discharge and then again one to two weeks later to confirm that the infection has cleared. Ampicillin/sulbactam plus doxycycline is effective against C. trachomatis, N. gonorrhoeae, and anaerobes in women with tubo-ovarian abscess. Parenteral Regimens described by the Centers for Disease Control and prevention are Ampicillin/Sulbactam 3 g IV every 6 hours and Doxycycline 200 mg orally or IV every 24 hours, though other regiemes that are used for pelvic inflammatory disease have been effective.
Pain medications (such as morphine) do not appear to affect the accuracy of the clinical diagnosis of appendicitis and therefore should be given early in the patient's care. Historically there were concerns among some general surgeons that analgesics would affect the clinical exam in children, and some recommended that they not be given until the surgeon was able to examine the person.
"E. histolytica" infections occur in both the intestine and (in people with symptoms) in tissue of the intestine and/or liver. As a result, two different classes of drugs are needed to treat the infection, one for each location. Such anti-amoebic drugs are known as amoebicides.
Inflammation can spread to other parts of the gut in patients with typhlitis. The condition can also cause the cecum to become distended and can cut off its blood supply. This and other factors can result in necrosis and perforation of the bowel, which can cause peritonitis and sepsis.
Historically, the mortality rate for typhlitis was as high as 50%, mostly because it is frequently associated with bowel perforation. More recent studies have demonstrated better outcomes with prompt medical management, generally with resolution of symptoms with neutrophil recovery without death
Surgical intervention is nearly always required in form of exploratory laparotomy and closure of perforation with peritoneal wash. Occasionally they may be managed laparoscopically.
Conservative treatment including intravenous fluids, antibiotics, nasogastric aspiration and bowel rest is indicated only if the person is nontoxic and clinically stable.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Antibiotics have been used to prevent and treat these infections however the misuse of antibiotics is a serious problem for global health. It is recommended that guidelines be followed which outline when it is appropriate to give antibiotics and which antibiotics are most effective.
Atelectasis: mild to moderate fever, no changes or mild rales on chest auscultation.
Management: pulmonary exercises, ambulation (deep breathing and walking)
Urinary tract infection : high fever, malaise, costovertebral tenderness, positive urine culture.
Management: antibiotics as per culture sensitivity (cephalosporine).
Endometritis: moderate fever, exquisite uterine tenderness, minimal abdominal findings.
Management: multiple agent IV antibiotics to cover polymicrobial organisms: clindamycin, gentamicin, addition of ampicillin if no response, no cultures are necessary.
Wound infection: persistent spiking fever despite antibiotics, wound erythema or fluctuance, wound drainage.
Management: antibiotics for cellulitis, open and drain wound, saline-soaked packing twice a day, secondary closure.
Septic pelvic thrombophlebitis: persistent wide fever swings despite antibiotics, usually normal abdominal or pelvic exams.
Management: IV heparin for 7–10 days at rates sufficient to prolong the PTT to double the baseline values.
Mastitis: unilateral, localized erythema, edema, tenderness.
Management: antibiotics for cellulitis, open and drain abscess if present.
The mechanisms of the toxicity of fluoroquinolones have been attributed to their interactions with different receptor complexes, such as blockade of the GABAa receptor complex within the central nervous system, leading to excitotoxic type effects and oxidative stress.
Products containing multivalent cations, such as aluminium- or magnesium-containing antacids, and products containing calcium, iron or zinc invariably result in marked reduction of oral absorption of fluoroquinolones. Other drugs that interact with fluoroquinolones include sucralfate, probenecid, cimetidine, theophylline, warfarin, antiviral agents, phenytoin, cyclosporine, rifampin, pyrazinamide, and cycloserine.
Administration of quinolone antibiotics to a benzodiazepine dependent individual can precipitate acute benzodiazepine withdrawal symptoms due to quinolones displacing benzodiazepines from their binding site.
Fluoroquinolones have varying specificity for cytochrome P450, and so may have interactions with drugs cleared by those enzymes; the order from most P450-inhibitory to least, is enoxacin > ciprofloxacin > norfloxacin > ofloxacin, levofloxacin, trovafloxacin, gatifloxacin, moxifloxacin.
Complications of TOA are related to the possible removal of one or both ovaries and fallopian tubes. Without these reproductive structures, fertility can be affected. Surgical complications can develop and include:
- Allergic shock due to anesthetics
- A paradoxical reaction to a drug
- Infection
The most commonly available antiviral drugs for treating FIP are either feline recombinant interferon omega (Virbagen Omega, Virbac) or human interferon. Since the action of interferon is species-specific, feline interferon is more efficacious than human interferon.
An experimental antiviral drug called GC 376 was used in a field trial of 20 cats: 7 cats went into remission, 13 cats responded initially but relapsed and were euthanazed. This drug is not yet commercially available: watch the University of California Davis website for progress updates.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
Endotoxemia is a serious complication of colic and warrants aggressive treatment. Endotoxin (lipopolysaccharide) is released from the cell wall of gram-negative bacteria when they die. Normally, endotoxin is prevented from entering systemic circulation by the barrier function of the intestinal mucosa, antibodies and enzymes which bind and neutralize it and, for the small amount that manages to enter the blood stream, removal by Kupffer cells in the liver. Endotoxemia occurs when there is an overgrowth and secondary die-off of gram negative bacteria, releasing mass quantities of endotoxin. This is especially common when the mucosal barrier is damaged, as with ischemia of the GI tract secondary to a strangulating lesion or displacement. Endotoxemia produces systemic effects such as cardiovascular shock, insulin resistance, and coagulation abnormalities.
Fluid support is essential to maintain blood pressure, often with the help of colloids or hypertonic saline. NSAIDs are commonly given to reduce systemic inflammation. However, they decrease the levels of certain prostaglandins that normally promote healing of the intestinal mucosa, which subsequently increases the amount of endotoxin absorbed. To counteract this, NSAIDs are sometimes administered with a lidocaine drip, which appears to reduce this particular negative effect. Flunixin may be used for this purpose at a dose lower than that used for analgesia, so can be safely given to a colicky horse without risking masking signs that the horse requires surgery. Other drugs that bind endotoxin, such as polymyxin B and Bio-Sponge, are also often used. Polymixin B prevents endotoxin from binding to inflammatory cells, but is potentially nephrotoxic, so should be used with caution in horses with azotemia, especially neonatal foals. Plasma may also be given with the intent of neutralizing endotoxin.
Laminitis is a major concern in horses suffering from endotoxemia. Ideally, prophylactic treatment should be provided to endotoxic horses, which includes the use of NSAIDs, DMSO, icing of the feet, and frog support. Horses are also sometimes administered heparin, which is thought to reduce the risk of laminitis by decreasing blood coagulability and thus blood clot formation in the capillaries of the foot.
If bacterial infection is suspected, antibiotics may be used. Despite being recommended by several guidelines, the use of antibiotics in mild cases of uncomplicated diverticulitis is supported with only "sparse and of low quality" evidence, with no evidence supporting their routine use.