Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
The goals of surgical treatment are: reducing length of the thumb, creating a good functioning, a stable and non deviated joint and improving the position of the thumb if necessary. Hereby improving function of the hand and thumb.
In general the surgical treatment is done for improvement of the thumb function. However, an extra advantage of the surgery is the improvement in appearance of the thumb. In the past, surgical treatment of the triphalangeal thumb was not indicated, but now it is generally agreed that operative treatment improves function and appearance. Because an operation was not indicated in the past, there’s still a population with an untreated triphalangeal thumb. The majority of this population doesn’t want surgery, because the daily functioning of the hand is good. The main obstacle for the untreated patients might not be the diminished function, but the appearance of the triphalangeal thumb.
The timing of surgery differs between Wood and Buck-Gramcko. Wood advises operation between the age of six months and two years, while Buck-Gramcko advises to operate for all indications before the age of six years.
- For TPT types I and II of the Buck-Gramcko classification, the surgical treatment typically consists of removing the extra phalanx and reconstructing the ulnar collateral ligament and the radial collateral ligament if necessary.
- For type III of Buck-Gramcko classification proposable surgical treatments:
- For type IV of Buck-Gramcko classification the surgical treatment typically consists of an osteotomy which reduces the middle phalanx and arthrodesis of the DIP. This gives a shortening of 1 to 1.5 cm. In most cases, this technique is combined with a shortening, rotation and palmar abduction osteotomy at metacarpal level to correct for position and length of the thumb. The extensor tendons and the intrinsic muscles are shortened as well.
- For type V of the Buck-Gramcko classification the surgical treatment proposably consists of a "pollicization". With a pollicization the malpositioned thumb is repositioned, rotated and shortened, the above-described rotation reduction osteotomy of the first metacarpal can be performed as well.
- For type VI of the Buck-Gramcko classification, the surgical treatment typically consists of removing the additional mostly hypoplastic thumb(s). Further procedures of reconstruction of the triphalangeal thumb are performed according to the shape of the extra phalanx as described above.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
This type of procedure is recommended for Wassel types 1 and 2 (in which both thumbs are severely hypoplastic) by some congenital hand surgeons. The technique contains a composite wedge resection of the central bone and soft-tissue. This will be achieved with approach of the lateral tissue of each thumb. The goal is to achieve a normal thumb, what concerns the size, which is possible. If the width of the nail bed is greater than 70% of the contralateral thumb, it may be split. Then the nail bed will be repaired precisely.
Treatment is usually with some combination of the Ponseti or French methods. The Ponseti method includes the following: casting together with manipulation, cutting the Achilles tendon, and bracing. The Ponseti method has been found to be effective in correcting the problem in those under the age of two. The French method involves realignment and tapping of the foot is often effective but requires a lot of effort by caregivers. Another technique known as Kite does not appear as good. In about 20% of cases further surgery is required.
Surgical treatment is only initiated if there is severe pain, as the available operations can be difficult. Otherwise, high arches may be handled with care and proper treatment.
Suggested conservative management of patients with painful pes cavus typically involves strategies to reduce and redistribute plantar pressure loading with the use of foot orthoses and specialised cushioned footwear. Other non-surgical rehabilitation approaches include stretching and strengthening of tight and weak muscles, debridement of plantar callosities, osseous mobilization, massage, chiropractic manipulation of the foot and ankle, and strategies to improve balance. There are also numerous surgical approaches described in the literature that are aimed at correcting the deformity and rebalancing the foot. Surgical procedures fall into three main groups:
1. soft-tissue procedures (e.g. plantar fascia release, Achilles tendon lengthening, tendon transfer);
2. osteotomy (e.g. metatarsal, midfoot or calcaneal);
3. bone-stabilising procedures (e.g. triple arthrodesis).
Using the Ponseti method, the foot deformity is corrected in stages. These stages are as follows: manipulating the foot to an improved position and then holding it with a long leg cast, then removing the cast after a week, and then manipulating the foot again. The foot position usually improves over a course of 4-6 casts. The amount of casts varies from person to person to address each individual's characteristic needs.
- The initial cast focuses on aligning the forefoot with the hindfoot as Ponseti describes the forefoot as relatively pronated in comparison to the hindfoot. Supinating the forefoot and elevating the first metatarsal improves this alignment.
- Subsequent casts are applied after stretching the foot with a focus on abducting the forefoot with lateral pressure at the talus, to bring the navicula laterally and improve the alignment of the talonavicular joint. In contrast to the Kite Method of casting, it is important to avoid constraining the calcanocuboid joint. With each additional cast, the abduction is increased and this moves the hindfoot from varus into valgus. It is important to leave the ankle in equinus until the forefoot and hindfoot are corrected.
- The final stage of casting, is to correct the equinus. After fully abducting the forefoot with spontaneous correction of the hindfoot, an attempt is made to bring the ankle up and into dorsiflexion. For the majority of children, the equinus will not fully correct with casting and a procedure is done to facilitate this final aspect of the deformity correction. The procedure is a percutaneous heel cord release or Tenotomy. Ponseti advocated for doing this in the clinic with a local anesthetic. For safety reasons, many centers perform this procedure with sedation or monitored anesthesia care. In this procedure, numbing medicine is applied, the skin is cleansed, and a small scalpel is used to divide the Achilles tendon. With a small scalpel there is minimal bleeding and no need for stitches. A small dressing is applied and a final clubfoot cast is applied with the foot in a fully corrected position. This cast is typically left in place for 3 weeks.
After correction has been achieved with casting, maintenance of correction starts with full-time (23 hours per day) use of a brace —also known as a foot abduction brace (FAB)—on both feet, regardless of whether the TEV is on one side or both, typically full-time for 3 months. After 3 months, brace wear is decreased and used mostly when sleeping for naps and at night-time. This part-time bracing is recommended until the child is 4 years of age.
Roughly 30% of children will have recurrence. A recurrence can usually be managed with repeating the casting process. Recurrence is more common when there is poor compliance with the bracing, because the muscles around the foot can pull it back into the abnormal position. Approximately 20% of infants successfully treated with the Ponseti casting method will have an imbalance between the muscles that invert the ankle (posterior tibialis and anterior tibialis muscles) and the muscles that evert the ankle (peroneal muscles). Patients with this imbalance are more prone to recurrence. After 18 months of age, this can be addressed with surgery to transfer the anterior tibialis tendon from it medial attachment (the navicula) to a more lateral position (the lateral cuneiform) to rebalance these muscle forces. While this requires a general anesthetic and subsequent casting while the tendon heals, it is a relatively minor surgery that corrects a persistent muscle imbalance while avoiding disturbance to the joints of the foot.
Incisions across the groove turned out to be ineffective. Excision of the groove followed by z-plasty could relieve pain and prevent autoamputation in Grade I and Grade II lesions. Grade III lesions are treated with disarticulating the metatarsophalangeal joint. This also relieves pain, and all patients have a useful and stable foot. Intralesional injection of corticosteroids is also helpful.
For idiopathic toe walking in young children, doctors may prefer to watch and wait: the child may "outgrow" the condition. If there is a reduction in the child's range of motion, there are several options.
- Wearing a brace or splint either during the day, night or both which limits the ability of the child to walk on their toes and stretches the Achilles tendon. One type of brace used is an AFO (ankle-foot orthosis).
- Serial casting where the foot is cast with the tendon stretched, and the cast is changed weekly with progressive stretching. However, these casts may not be changed weekly and instead every 2-3 weeks.
- Botox therapy is used to paralyze the calf muscles to reduce the opposition of the muscles to stretching the Achilles tendon, usually together with serial casting or splinting.
- If conservative measures fail to correct the toe walking after about 12–24 months, surgical lengthening of the tendon is an option. The surgery is typically done under full anesthesia but if there are no issues, the child is released the same day. After the surgery, a below-the-knee walking cast is worn for six weeks and then an AFO is worn to protect the tendon for several months.
For toe walking which results from more serious neuro-muscular conditions, additional specialists may need to be consulted.
The underlying disorder must be treated. For example, if a spinal disc herniation in the low back is impinging on the nerve that goes to the leg and causing symptoms of foot drop, then the herniated disc should be treated. If the foot drop is the result of a peripheral nerve injury, a window for recovery of 18 months to 2 years is often advised. If it is apparent that no recovery of nerve function takes place, surgical intervention to repair or graft the nerve can be considered, although results from this type of intervention are mixed.
Non-surgical treatments for spinal stenosis include a suitable exercise program developed by a physical therapist, activity modification (avoiding activities that cause advanced symptoms of spinal stenosis), epidural injections, and anti-inflammatory medications like ibuprofen or aspirin. If necessary, a decompression surgery that is minimally destructive of normal structures may be used to treat spinal stenosis.
Non-surgical treatments for this condition are very similar to the non-surgical methods described above for spinal stenosis. Spinal fusion surgery may be required to treat this condition, with many patients improving their function and experiencing less pain.
Nearly half of all vertebral fractures occur without any significant back pain. If pain medication, progressive activity, or a brace or support does not help with the fracture, two minimally invasive procedures - vertebroplasty or kyphoplasty - may be options.
Ankles can be stabilized by lightweight orthoses, available in molded plastics as well as softer materials that use elastic properties to prevent foot drop. Additionally, shoes can be fitted with traditional spring-loaded braces to prevent foot drop while walking. Regular exercise is usually prescribed.
Functional electrical stimulation (FES) is a technique that uses electrical currents to activate nerves innervating extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. FES is primarily used to restore function in people with disabilities. It is sometimes referred to as Neuromuscular electrical stimulation (NMES)
The latest treatments include stimulation of the peroneal nerve, which lifts the foot when you step. Many stroke and multiple sclerosis patients with foot drop have had success with it. Often, individuals with foot drop prefer to use a compensatory technique like steppage gait or hip hiking as opposed to a brace or splint.
Treatment for some can be as easy as an underside "L" shaped foot-up ankle support (ankle-foot orthoses). Another method uses a cuff placed around the patient's ankle, and a topside spring and hook installed under the shoelaces. The hook connects to the ankle cuff and lifts the shoe up when the patient walks.
Although the origin of the disease is unknown, there is speculation that it is an aggressive healing response to small tears in the plantar fascia, almost as if the fascia over-repairs itself following an injury. There is also some evidence that it might be genetic.
In the early stages, when the nodule is single and/or smaller, it is recommended to avoid direct pressure to the nodule(s). Soft inner soles on footwear and padding may be helpful.
MRI and sonogram (diagnostic ultrasound) are effective in showing the extent of the lesion, but cannot reveal the tissue composition. Even then, recognition of the imaging characteristics of plantar fibromatoses can help in the clinical diagnosis.
Surgery of Ledderhose's disease is difficult because tendons, nerves, and muscles are located very closely to each other. Additionally, feet have to carry heavy load, and surgery might have unpleasant side effects. If surgery is performed, the biopsy is predominantly cellular and frequently misdiagnosed as fibrosarcoma. Since the diseased area (lesion) is not encapsulated, clinical margins are difficult to define. As such, portions of the diseased tissue may be left in the foot after surgery. Inadequate excision is the leading cause of recurrence.
Radiotherapy has been shown to reduce the size of the nodules and reduce the pain associated with them. It is approximately 80% effective, with minimal side-effects.
Post-surgical radiation treatment may decrease recurrence. There has also been variable success in preventing recurrence by administering gadolinium. Skin grafts have been shown to control recurrence of the disease.
In few cases shock waves also have been reported to at least reduce pain and enable walking again. Currently in the process of FDA approval is the injection of collagenase. Recently successful treatment of Ledderhose with cryosurgery (also called cryotherapy) has been reported.
Cortisone injections, such as Triamcinolone, and clobetasol ointments have been shown to stall the progression of the disease temporarily, although the results are subjective and large-scale studies far from complete. Injections of superoxide dismutase have proven to be unsuccessful in curing the disease while radiotherapy has been used successfully on Ledderhose nodules.
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
Treatment usually involves resting the affected foot, taking pain relievers and trying to avoid putting pressure on the foot. In acute cases, the patient is often fitted with a cast that stops below the knee. The cast is usually worn for 6 to 8 weeks. After the cast is taken off, some patients are prescribed arch support for about 6 months. Also, moderate exercise is often beneficial, and physical therapy may help as well.
Prognosis for children with this disease is very good. It may persist for some time, but most cases are resolved within two years of the initial diagnosis. Although in most cases no permanent damage is done, some will have lasting damage to the foot. Also, later in life, Kohler's disease can spread to the hips.
A doctor will typically evaluate whether there is bilateral (both legs) toe walking, what the child's range of motion is (how far they can flex their feet) and perform a basic neurological exam. Treatment will depend on the cause of the condition.
Wearing shoes to protect barefoot trauma has shown decrease in incidence in ainhum. Congenital pseudoainhum cannot be prevented and can lead to serious birth defects.
In some cases, foot diseases and painful conditions can be treated. Synovium hydrates the cartilage in the heal and can bring pain relief quickly. Synovium gel looks as well as strongly smells like urine, straying some consumers away. However this only occurs after expiration. Blood thinners can also work however are deemed as bad relievers by medical practitioners due to the fact that they can contribute to headaches and in some cases increase foot pain afterwards.
Once the process is recognized, it should be treated via the VIPs — vascular management, infection management and prevention, and pressure relief. Aggressively pursuing these three strategies will progress the healing trajectory of the wound. Pressure relief (off-loading) and immobilization with total contact casting (TCC) are critical to helping ward off further joint destruction.
TCC involves encasing the patient’s complete foot, including toes, and the lower leg in a specialist cast that redistributes weight and pressure in the lower leg and foot during everyday movements. This redistributes pressure from the foot into the leg, which is more able to bear weight, to protect the wound, letting it regenerate tissue and heal. TCC also keeps the ankle from rotating during walking, which prevents shearing and twisting forces that can further damage the wound. TCC aids maintenance of quality of life by helping patients to remain mobile.
There are two scenarios in which the use of TCC is appropriate for managing neuropathic arthropathy (Charcot foot), according to the American Orthopaedic Foot and Ankle Society. First, during the initial treatment, when the breakdown is occurring, and the foot is exhibiting edema and erythema; the patient should not bear weight on the foot, and TCC can be used to control and support the foot. Second, when the foot has become deformed and ulceration has occurred; TCC can be used to stabilize and support the foot, and to help move the wound toward healing.
Walking braces controlled by pneumatics are also used. Surgical correction of a joint is rarely successful in the long-term in these patients. However, off-loading alone does not translate to optimal outcomes without appropriate management of vascular disease and/or infection. Duration and aggressiveness of offloading (non-weight-bearing vs. weight-bearing, non-removable vs. removable device) should be guided by clinical assessment of healing of neuropathic arthropathy based on edema, erythema, and skin temperature changes. It can take 6–9 months for the edema and erythema of the affected joint to recede.
With so few individuals actually surviving until birth, the only treatment option is surgery to try to remove the parasitic twin. Surgery, however, is very dangerous and has been successful only once. The problem with surgical intervention is that the arterial supplies of the head are so intertwined that it is very hard to control the bleeding, and it has been suggested that cutting off the parasitic twin's arterial supply might improve the odds of the developed twin's survival.
Treatment of diabetic foot can be challenging and prolonged; it may include orthopaedic appliances, antimicrobial drugs and topical dressings.
Most diabetic foot infections (DFIs) require treatment with systemic antibiotics. The choice of the initial antibiotic treatment depends on several factors such as the severity of the infection, whether the patient has received another antibiotic treatment for it, or whether the infection has been caused by a micro-organism that is known to be resistant to usual antibiotics (e.g. MRSA). The objective of antibiotic therapy is to stop the infection and ensure it does not spread.
It is unclear whether any particular antibiotic is better than any other for curing infection or avoiding amputation. One trial suggested that ertapenem with or without vancomycin is more effective than tigecycline for resolving DFIs. It is also generally unclear whether different antibiotics are associated with more or fewer adverse effects.
It is recommended however that the antibiotics used for treatment of diabetic foot ulcers should be used after deep tissue culture of the wound. Tissue culture and not pus swab culture should be done. Antibiotics should be used at correct doses in order to prevent the emergence of drug resistance.
There are many types of dressings used to treat diabetic foot ulcers such as absorptive fillers, hydrogel dressings, and hydrocolloids. There is no good evidence that one type of dressing is better than another for diabetic foot ulcers. In selecting dressings for chronic non healing wounds it is recommended that the cost of the product be taken into account.
Hydrogel dressings may have shown a slight advantage over standard dressings, but the quality of the research is of concern. Dressings and creams containing silver have not been properly studied nor have alginate dressings. Biologically active bandages that combine hydrogel and hydrocolloid traits are available, however more research needs to be conducted as to the efficacy of this option over others.
Most flexible flat feet are asymptomatic, and do not cause pain. In these cases, there is usually no cause for concern. Flat feet were formerly a physical-health reason for service-rejection in many militaries. However, three military studies on asymptomatic adults (see section below), suggest that persons with asymptomatic flat feet are at least as tolerant of foot stress as the population with various grades of arch. Asymptomatic flat feet are no longer a service disqualification in the U.S. military.
In a study performed to analyze the activation of the tibialis posterior muscle in adults with pes planus, it was noted that the tendon of this muscle may be dysfunctional and lead to disabling weightbearing symptoms associated with acquired flat foot deformity. The results of the study indicated that while barefoot, subjects activated additional lower-leg muscles to complete an exercise that resisted foot adduction. However, when the same subjects performed the exercise while wearing arch supporting orthotics and shoes, the tibialis posterior was selectively activated. Such discoveries suggest that the use of shoes with properly fitting, arch-supporting orthics will enhance selective activation of the tibialis posterior muscle thus, acting as an adequate treatment for the undesirable symptoms of pes planus.
Rigid flatfoot, a condition where the sole of the foot is rigidly flat even when a person is not standing, often indicates a significant problem in the bones of the affected feet, and can cause pain in about a quarter of those affected. Other flatfoot-related conditions, such as various forms of tarsal coalition (two or more bones in the midfoot or hindfoot abnormally joined) or an accessory navicular (extra bone on the inner side of the foot) should be treated promptly, usually by the very early teen years, before a child's bone structure firms up permanently as a young adult. Both tarsal coalition and an accessory navicular can be confirmed by X-ray. Rheumatoid arthritis can destroy tendons in the foot (or both feet) which can cause this condition, and untreated can result in deformity and early onset of osteoarthritis of the joint. Such a condition can cause severe pain and considerably reduced ability to walk, even with orthoses. Ankle fusion is usually recommended.
Treatment of flat feet may also be appropriate if there is associated foot or lower leg pain, or if the condition affects the knees or the lower back. Treatment may include using orthoses such as an arch support, foot gymnastics or other exercises as recommended by a podiatrist/orthotist or physical therapist. In cases of severe flat feet, orthoses should be used through a gradual process to lessen discomfort. Over several weeks, slightly more material is added to the orthosis to raise the arch. These small changes allow the foot structure to adjust gradually, as well as giving the patient time to acclimatise to the sensation of wearing orthoses. Once prescribed, orthoses are generally worn for the rest of the patient's life. In some cases, surgery can provide lasting relief, and even create an arch where none existed before; it should be considered a last resort, as it is usually very time consuming and costly.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
Treatment for cystic hygroma involves the removal of the abnormal tissue; however complete removal may be impossible without removing other normal areas. Surgical removal of the tumor is the typical treatment provided, with the understanding that additional removal procedures will most likely be required as the lymphangioma grows. Most patients need at least two procedures done for the removal process to be achieved. Recurrence is possible but unlikely for those lesions able to be removed completely via excisional surgery. Radiotherapy and chemical cauteries are not as effective with the lymphangioma than they are with the hemangioma. Draining lymphangiomas of fluid provides only temporary relief, so they are removed surgically. Cystic Hygroma can be treated with OK432 (Picibanil).
The least invasive and most effective form of treatment is now performed by interventional radiologists. A sclerosing agent, such as 1% or 3% sodium tetradecyl sulfate, doxycycline, or ethanol, may be directly injected into a lymphocele. "All sclerosing agents are thought to work by ablating the endothelial cells of the disrupted lymphatics feeding into the lymphocele."
Lymphangioma circumscription can be healed when treated with a flashlamp pulsed dye laser, although this can cause port-wine stains and other vascular lesions.