Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
So far, there is no certain treatment that can completely stop snoring. Almost all treatments for snoring revolve around lessening the breathing discomfort by clearing the blockage in the air passage. Medications are usually not helpful in treating snoring symptoms, though they can help control some of the underlying causes such as nasal congestion and allergic reactions. Doctors, therefore, often recommend lifestyle changes as a first line treatment to stop snoring. This is the reason snorers are advised to lose weight (to stop fat from pressing on the throat), stop smoking (smoking weakens and clogs the throat), avoid alcohol and sedative medications before bedtime (they relax the throat and tongue muscles, which in turn narrow the airways) and sleep on their side (to prevent the tongue from blocking the throat).
A number of other treatment options are also used to stop snoring. These range from over-the-counter aids such as nasal sprays, nasal strips or nose clips, lubricating sprays, oral appliances and "anti-snore" clothing and pillows, to unusual activities such as playing the didgeridoo. However, one needs to be wary of over-the-counter snore treatments that have no scientific evidence to support their claims, such as stop-snore rings or wrist worn electrical stimulation bands.
Orthopedic pillows are the least intrusive option for reducing snoring. These pillows are designed to support the head and neck in a way that ensures the jaw stays open and slightly forward. This helps keep the airways unrestricted as possible and in turn leads to a small reduction in snoring.
Evidence is insufficient to support the use of medications to treat obstructive sleep apnea. This includes the use of fluoxetine, paroxetine, acetazolamide and tryptophan among others.
Numerous treatment options are used in obstructive sleep apnea. Avoiding alcohol and smoking is recommended, as is avoiding medications that relax the central nervous system (for example, sedatives and muscle relaxants). Weight loss is recommended in those who are overweight. Continuous positive airway pressure (CPAP) and mandibular advancement devices are often used and found to be equally effective. Physical training, even without weight loss, improves sleep apnea. There is insufficient evidence to support widespread use of medications or surgery.
Positive airway pressure therapy is similar to that in obstructive sleep apnea and works by stenting the airway open with pressure, thus reducing the airway resistance. Use of a CPAP mask can help ease the symptoms of UARS. Therapeutic trials have shown that using a CPAP mask with pressure between four and eight centimeters of water can help to reduce the number of arousals and improve sleepiness. CPAP masks are the most promising treatment for UARS, but effectiveness is reduced by low patient compliance.
Nasal steroids may be prescribed in order to ease nasal allergies and other obstructive nasal conditions that could cause UARS.
There is limited evidence for medication but acetazolamide "may be considered" for the treatment of central sleep apnea; it also found that zolpidem and triazolam may be considered for the treatment of central sleep apnea, but "only if the patient does not have underlying risk factors for respiratory depression". Low doses of oxygen are also used as a treatment for hypoxia but are discouraged due to side effects.
For moderate to severe sleep apnea, the most common treatment is the use of a continuous positive airway pressure (CPAP) or automatic positive airway pressure (APAP) device. These splint the person's airway open during sleep by means of pressurized air. The person typically wears a plastic facial mask, which is connected by a flexible tube to a small bedside CPAP machine.
With proper use, CPAP improves outcomes. Whether or not it decreases the risk of death or heart disease is controversial with some reviews finding benefit and others not. This variation across studies might be driven by low rates of compliance—analyses of those who use CPAP for at least four hours a night suggests a decrease in cardiovascular events. Evidence suggests that CPAP may improve sensitivity to insulin, blood pressure, and sleepiness. Long term compliance, however, is an issue with more than half of people not appropriately using the device.
Although CPAP therapy is effective in reducing apneas and less expensive than other treatments, some people find it uncomfortable. Some complain of feeling trapped, having chest discomfort, and skin or nose irritation. Other side effects may include dry mouth, dry nose, nosebleeds, sore lips and gums.
One treatment for obstructive hypopnea is continuous positive airway pressure (CPAP). CPAP is a treatment in which the patient wears a mask over the nose and/or mouth. An air blower forces air through the upper airway. The air pressure is adjusted so that it is just enough to maintain the oxygen saturation levels in the blood. Another treatment is sometimes a custom fitted oral appliance. The American Academy of Sleep Medicine's protocol for obstructive sleep apnea (OSA) recommends oral appliances for those who prefer them to CPAP and have mild to moderate sleep apnea or those that do not respond to/cannot wear a CPAP. Severe cases of OSA may be treated with an oral appliance if the patient has had a trial run with a CPAP. Oral Appliances should be custom made by a dentist with training in dental sleep medicine. Mild obstructive hypopnea can often be treated by losing weight or by avoiding sleeping on one's back. Also quitting smoking, and avoiding alcohol, sedatives and hypnotics (soporifics) before sleep can be quite effective. Surgery is generally a last resort in hypopnea treatment, but is a site-specific option for the upper airway. Depending on the cause of obstruction, surgery may focus on the soft palate, the uvula, tonsils, adenoids or the tongue. There are also more complex surgeries that are performed with the adjustment of other bone structures - the mouth, nose and facial bones.
Sleeping in a more upright position seems to lessen catathrenia (as well as sleep apnea). Performing regular aerobic exercise, where steady breathing is necessary (running, cycling etc.) may lessen catathrenia. Strength exercise, on the other hand, may worsen catathrenia because of the tendency to hold one's breath while exercising. Yoga and/or meditation focused on steady and regular breathing may lessen catathrenia.
People with neuromuscular disorders or hypoventilation syndromes involving failed respiratory drive experience central hypoventilation. The most common treatment for this form is the use of non-invasive ventilation such as a BPAP machine.
Research suggests that hypnosis may be helpful in alleviating some types and manifestations of sleep disorders in some patients. "Acute and chronic insomnia often respond to relaxation and hypnotherapy approaches, along with sleep hygiene instructions." Hypnotherapy has also helped with nightmares and sleep terrors. There are several reports of successful use of hypnotherapy for parasomnias specifically for head and body rocking, bedwetting and sleepwalking.
Hypnotherapy has been studied in the treatment of sleep disorders in both adults and children.
A review of the evidence in 2012 concluded that current research is not rigorous enough to make recommendations around the use of acupuncture for insomnia. The pooled results of two trials on acupuncture showed a moderate likelihood that there may be some improvement to sleep quality for individuals with a diagnosis insomnia. This form of treatment for sleep disorders is generally studied in adults, rather than children. Further research would be needed to study the effects of acupuncture on sleep disorders in children.
Many different medications have been used to treat bruxism, including benzodiazepines, anticonvulsants, beta blockers, dopamine agents, antidepressants, muscle relaxants, and others. However, there is little, if any, evidence for their respective and comparative efficacies with each other and when compared to a placebo. A systematic review is underway to investigate the evidence for drug treatments in sleep bruxism.
Specific drugs that have been studied in sleep bruxism are clonazepam, levodopa, amitriptyline, bromocriptine, pergolide, clonidine, propranolol, and l-tryptophan, with some showing no effect and others appear to have promising initial results; however, it has been suggested that further safety testing is required before any evidence-based clinical recommendations can be made. When bruxism is related to the use of selective serotonin reuptake inhibitors in depression, adding buspirone has been reported to resolve the side effect. Tricyclic antidepressants have also been suggested to be preferable to selective serotonin reuptake inhibitors in people with bruxism, and may help with the pain.
Simple behavioral methods are recommended as initial treatment. Enuresis alarm therapy and medications may be more effective but have potential side effects.
- Motivational therapy in nocturnal enuresis mainly involves parent and child education. Guilt should be allayed by providing facts. Fluids should be restricted 2 hours prior to bed. The child should be encouraged to empty the bladder completely prior to going to bed. Positive reinforcement can be initiated by setting up a diary or chart to monitor progress and establishing a system to reward the child for each night that he or she is dry. The child should participate in morning cleanup as a natural, nonpunitive consequence of wetting. This method is particularly helpful in younger children (<8 years) and will achieve dryness in 15-20% of the patients.
- Waiting: Almost all children will outgrow bedwetting. For this reason, urologists and pediatricians frequently recommend delaying treatment until the child is at least six or seven years old. Physicians may begin treatment earlier if they perceive the condition is damaging the child's self-esteem and/or relationships with family/friends.
- Bedwetting alarms: Physicians also frequently suggest bedwetting alarms which sound a loud tone when they sense moisture. This can help condition the child to wake at the sensation of a full bladder. These alarms are considered effective, with study participants being 13 times more likely to become dry at night. There is a 29% to 69% relapse rate, however, so the treatment may need to be repeated.
- DDAVP (desmopressin) tablets are a synthetic replacement for antidiuretic hormone, the hormone that reduces urine production during sleep. Desmopressin is usually used in the form of desmopressin acetate, DDAVP. Patients taking DDAVP are 4.5 times more likely to stay dry than those taking a placebo. The drug replaces the hormone for that night with no cumulative effect. US drug regulators have banned using desmopressin nasal sprays for treating bedwetting since the oral form is considered safer.
- DDAVP is most efficient in children with nocturnal polyuria (nocturnal urine production greater than 130% of expected bladder capacity for age) and normal bladder reservoir function (maximum voided volume greater than 70% of expected bladder capacity for age). Other children who are likely candidates for desmopressin treatment are those in whom alarm therapy has failed or those considered unlikely to comply with alarm therapy. It can be very useful for summer camp and sleepovers to prevent enuresis.
- Tricyclic antidepressants: Tricyclic antidepressant prescription drugs with anti-muscarinic properties have been proven successful in treating bedwetting, but also have an increased risk of side effects, including death from overdose. These drugs include amitriptyline, imipramine and nortriptyline. Studies find that patients using these drugs are 4.2 times as likely to stay dry as those taking a placebo. The relapse rates after stopping the medicines are close to 50%.
Botulinum toxin (Botox) is used as a treatment for bruxism, however there is only one randomized control trial which has reported that Botox reduces the myofascial pain symptoms. This scientific study was based on thirty people with bruxism who received Botox injections into the muscles of mastication and a control group of people with bruxism who received placebo injections. Normally multiple trials with larger cohorts are required to make any firm statement about the efficacy of a treatment. In 2013, a further randomized control trial investigating Botox in bruxism started. There is also little information available about the safety and long term followup of this treatment for bruxism.
Botulinum toxin causes muscle paralysis/atrophy by inhibition of acetylcholine release at neuromuscular junctions. Botox injections are used in bruxism on the theory that a dilute solution of the toxin will partially paralyze the muscles and lessen their ability to forcefully clench and grind the jaw, while aiming to retain enough muscular function to enable normal activities such as talking and eating. This treatment typically involves five or six injections into the masseter and temporalis muscles, and less often into the lateral pterygoids (given the possible risk of decreasing the ability to swallow) taking a few minutes per side. The effects may be noticeable by the next day, and they may last for about three months. Occasionally, adverse effects may occur, such as bruising, but this is quite rare. The dose of toxin used depends upon the person, and a higher dose may be needed in people with stronger muscles of mastication. With the temporary and partial muscle paralysis, atrophy of disuse may occur, meaning that the future required dose may be smaller or the length of time the effects last may be increased.
PLMD is often treated with anti-Parkinson medication; it may also respond to anticonvulsants, benzodiazepines, and narcotics. Patients must stay on these medications in order to experience relief, because there is no known cure for this disorder.
PLMs tend to be exacerbated by tricyclic antidepressants, SSRIs, stress, and sleep deprivation. It is also advised not to consume caffeine, alcohol, or antidepressants as these substances could worsen the PLMD symptoms.
Other medications aimed at reducing or eliminating the leg jerks or the arousals can be prescribed. Non-ergot derived dopaminergic drugs (pramipexole and ropinirole) are preferred. Other dopaminergic agents such as co-careldopa, co-beneldopa, pergolide, or lisuride may also be used. These drugs decrease or eliminate both the leg jerks and the arousals. These medications are also successful for the treatment of restless legs syndrome.
In one study, co-careldopa was superior to dextropropoxyphene in decreasing the number of leg kicks and the number of arousals per hour of sleep. However, co-careldopa and, to a lesser extent, pergolide may shift the leg movements from the nighttime to the daytime.
Clonazepam (Klonopin), in doses of 1 mg has been shown to improve objective and subjective measures of sleep.
Nighttime incontinence may be treated by increasing ADH levels. The hormone can be boosted by a synthetic version known as desmopressin, or DDAVP, which recently became available in pill form. Patients can also spray a mist containing desmopressin into their nostrils. Desmopressin is approved for use by children. There is difficulty in keeping the bed dry after medication is stopped, with as high as an 80% relapse rate.
Another medication, called imipramine, is also used to treat sleepwetting. It acts on both the brain and the urinary bladder. Unfortunately, total dryness with either of the medications available is achieved in only about 20 percent of patients.
If a young person experiences incontinence resulting from an overactive bladder, a doctor might prescribe a medicine that helps to calm the bladder muscle, such as oxybutynin. This medicine controls muscle spasms and belongs to a class of medications called anticholinergics.
Techniques that may help daytime incontinence include:
- Urinating on a schedule, such as every 2 hours (this is called timed voiding)
- Avoiding caffeine or other foods or drinks that may contribute to a child's incontinence
- Following suggestions for healthy urination, such as relaxing muscles and taking your time
There are a number of management options for bedwetting. The following options apply when the bedwetting is not caused by a specifically identifiable medical condition such as a bladder abnormality or diabetes. Treatment is recommended when there is a specific medical condition such as bladder abnormalities, infection, or diabetes. It is also considered when bedwetting may harm the child's self-esteem or relationships with family/friends. Only a small percentage of bedwetting is caused by a specific medical condition, so most treatment is prompted by concern for the child's "emotional" welfare. Behavioral treatment of bedwetting overall tends to show increased self-esteem for children.
Parents become concerned much earlier than doctors. A study in 1980 asked parents and physicians the age that children should stay dry at night. The average parent response was 2.75 years old, while the average physician response was 5.13 years old.
Punishment is not effective and can interfere with treatment.
Positive airway pressure, initially in the form of "continuous" positive airway pressure (CPAP), is a useful treatment for obesity hypoventilation syndrome, particularly when obstructive sleep apnea co-exists. CPAP requires the use during sleep of a machine that delivers a continuous positive pressure to the airways and preventing the collapse of soft tissues in the throat during breathing; it is administered through a mask on either the mouth and nose together or if that is not tolerated on the nose only (nasal CPAP). This relieves the features of obstructive sleep apnea and is often sufficient to remove the resultant accumulation of carbon dioxide. The pressure is increased until the obstructive symptoms (snoring and periods of apnea) have disappeared. CPAP alone is effective in more than 50% of people with OHS.
In some occasions, the oxygen levels are persistently too low (oxygen saturations below 90%). In that case, the hypoventilation itself may be improved by switching from CPAP treatment to an alternate device that delivers "bi-level" positive pressure: higher pressure during inspiration (breathing in) and a lower pressure during expiration (breathing out). If this too is ineffective in increasing oxygen levels, the addition of oxygen therapy may be necessary. As a last resort, tracheostomy may be necessary; this involves making a surgical opening in the trachea to bypass obesity-related airway obstruction in the neck. This may be combined with mechanical ventilation with an assisted breathing device through the opening.
Medroxyprogesterone acetate, a progestin, has been shown to improve the ventilatory response, but this has been poorly studied and is associated with an increased risk of thrombosis. Similarly, the drug acetazolamide can reduce bicarbonate levels, and thereby augment to normal ventilatory response, but this has been researched insufficiently to recommend wide application.
Catathrenia is a rapid eye movement sleep parasomnia consisting of end-inspiratory apnea (breath holding) and expiratory groaning during sleep. Catathrenia is distinct from both somniloquy and obstructive sleep apnea. The sound is produced during exhalation as opposed to snoring which occurs during inhalation. It is usually not noticed by the person producing the sound but can be extremely disturbing to sleep partners. Bed partners generally report hearing the person take a deep breath, hold it, then slowly exhale; often with a high-pitched squeak or groaning sound.
Catathrenia typically, sometimes even exclusively, occurs during REM sleep, although it may also occur to a lesser degree during NREM sleep. Catathrenia begins with a deep inspiration. The sufferer holds her or his breath against a closed glottis, similar to the Valsalva maneuver. After a period of time and some blood oxygen desaturation, there is an arousal, followed by expiration. Expiration can be slow and accompanied by sound caused by vibration of the vocal cords or a simple rapid exhalation with no sound.
There is debate about whether the cause is physical or neurological, a question that requires further study. While some speculate about a direct correlation to high anxiety and stress or the concept that catathrenia is purely psychological, there is only anecdotal evidence of either proposed cause.
Catathrenia has been defined as a parasomnia in the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2), but there is debate about its classification.
There are a few other similaritiesamongst catathrenia sufferers that have not yet been studied properly:
- Many catathrenia sufferers mention that they also suffer from some form of stress or anxiety in their lives.
- Sufferers themselves do not feel like they are experiencing a sleep apnea; the breath-holding appears to be controlled though the unconscious. Oxygen desaturation during a catathrenia episode is usually negligible.
- Many took part in sports activities during teens and twenties some which required breath-holding which included many types of sports such as swimming and even weight lifting. They find a certain level of comfort in breath-holding, and often do it while awake.
- Observations have been made of instances of breath holding during daily activities that require concentration.
- Some sufferers recalled suffering from lucid or stress dreams during their catathrenia episodes during their sleep.
- Some sufferers complain of having a painful chest upon waking from sleep.
Because catathrenia itself is not considered life-threatening, there has been very little research done in the medical community, and many experts assume that the way to treat catathrenia is to treat the underlying sleep apnea, though there is no conclusive evidence published that catathrenia results from sleep apnea, and sleep studies show that not all sufferers of catathrenia have been diagnosed with sleep apnea.
While doctors tend to dismiss it as an inconvenience, sufferers routinely describe the condition's highly negative effects on their daily lives including tiredness, low energy, dizziness and vertigo, work problems, relationship and social issues, and other physical and mental problems that could be associated with low sleep quality.
Catathrenia, a rapid-eye-movement sleep parasomnia consisting of breath holding and expiratory groaning during sleep, is distinct from both somniloquy and obstructive sleep apnea. The sound is produced during exhalation as opposed to snoring which occurs during inhalation. It is usually not noticed by the person producing the sound but can be extremely disturbing to sleep partners, although once aware of it, sufferers tend to be woken up by their own groaning as well. Bed partners generally report hearing the person take a deep breath, hold it, then slowly exhale; often with a high-pitched squeak or groaning sound.
Also called myofunctional therapy, the basic treatment aims of orofacial myofunctional therapist is to reeducate the movement of muscles, restore correct swallowing patterns, and establish adequate labial-lingual postures. An interdisciplinary nature of treatment is always desirable to reach functional goals in terms of swallowing, speech, and other esthetic factors. A team approach has been shown to be effective in correcting orofacial myofunctional disorders. The teams include an orthodontist, dental hygienist, certified orofacial myologist, general dentist, otorhinolaryngologist, and a speech-language pathologist.