Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In general, treatment for PanNET encompasses the same array of options as other neuroendocrine tumors, as discussed in that main article. However, there are some specific differences, which are discussed here.
In functioning PanNETs, octreotide is usually recommended prior to biopsy or surgery but is generally avoided in insulinomas to avoid profound hypoglycemia.
PanNETs in MEN1 are often multiple, and thus require different treatment and surveillance strategies.
Some PanNETs are more responsive to chemotherapy than are gastroenteric carcinoid tumors. Several agents have shown activity. In well differentiated PanNETs, chemotherapy is generally reserved for when there are no other treatment options. Combinations of several medicines have been used, such as doxorubicin with streptozocin and fluorouracil (5-FU) and capecitabine with temozolomide. Although marginally effective in well-differentiated PETs, cisplatin with etoposide has some activity in poorly differentiated neuroendocrine cancers (PDNECs), particularly if the PDNEC has an extremely high Ki-67 score of over 50%.
Several targeted therapy agents have been approved in PanNETs by the FDA based on improved progression-free survival (PFS):
- everolimus (Afinitor) is labeled for treatment of progressive neuroendocrine tumors of pancreatic origin in patients with unresectable, locally advanced or metastatic disease. The safety and effectiveness of everolimus in carcinoid tumors have not been established.
- sunitinib (Sutent) is labeled for treatment of progressive, well-differentiated pancreatic neuroendocrine tumors in patients with unresectable locally advanced or metastatic disease. Sutent also has approval from the European Commission for the treatment of 'unresectable or metastatic, well-differentiated pancreatic neuroendocrine tumors with disease progression in adults'. A phase III study of sunitinib treatment in well differentiated pNET that had worsened within the past 12 months (either advanced or metastatic disease) showed that sunitinib treatment improved progression-free survival (11.4 months vs. 5.5 months), overall survival, and the objective response rate (9.3% vs. 0.0%) when compared with placebo.
Even if the tumor has advanced and metastasized, making curative surgery infeasible, surgery often has a role in neuroendocrine cancers for palliation of symptoms and possibly increased lifespan.
Cholecystectomy is recommended if there is a consideration of long-term treatment with somatostatin analogs.
In secretory tumors, somatostatin analogs given subcutaneously or intramuscularly alleviate symptoms by blocking hormone release. A consensus review has reported on the use of somatostatin analogs for GEP-NETs.
These medications may also anatomically stabilize or shrink tumors, as suggested by the PROMID study (Placebo-controlled prospective randomized study on the antiproliferative efficacy of Octreotide LAR in patients with metastatic neuroendocrine MIDgut tumors): at least in this subset of NETs, average tumor stabilization was 14.3 months compared to 6 months for placebo.
The CLARINET study (a randomized, double-blind, placebo-controlled study on the antiproliferative effects of lanreotide in patients with enteropancreatic neuroendocrine tumors) further demonstrated the antiproliferative potential of lanreotide, a somatostatin analog and recently approved FDA treatment for GEP-NETS. In this study, lanreotide showed a statistically significant improvement in progression-free survival, meeting its primary endpoint. The disease in sixty five percent of patients treated with lanreotide in the study had not progressed or caused death at 96 weeks, the same was true of 33% of patients on placebo. This represented a 53% reduction in risk of disease progression or death with lanreotide based on a hazard ratio of .47.
Lanreotide is the first and only FDA approved antitumor therapy demonstrating a statistically significant progression-free survival benefit in a combined population of patients with GEP-NETS.
Other medications that block particular secretory effects can sometimes relieve symptoms.
The first goal of treatment is to correct dehydration. Fluids are often given through a vein (intravenous fluids) to replace fluids lost in diarrhea.
The next goal is to slow the diarrhea. Some medications can help control diarrhea. Octreotide, which is a human-made form of the natural hormone somatostatin, blocks the action of VIP.
The best chance for a cure is surgery to remove the tumor. If the tumor has not spread to other organs, surgery can often cure the condition.
For metastatic disease, peptide receptor radionuclide therapy (PRRT) can be highly effective. This treatment involves attaching a radionuclide (Lutetium-177 or Yttrium-90) to a somatostatin analogue (octreotate or octreotide). This is a novel way to deliver high doses of beta radiation to kill tumours.
Some people seem to respond to a combination chemo called capecitabine and temozolomide but there is no report that it totally cured people from vipoma.
The definitive management is surgical removal of the insulinoma. This may involve removing part of the pancreas, as well (Whipple procedure and distal pancreatectomy).
Medications such as diazoxide and somatostatin can be used to block the release of insulin for patients who are not surgical candidates or who otherwise have inoperable tumors.
Streptozotocin is used in islet cell carcinomas which produce excessive insulin. Combination chemotherapy is used, either doxorubicin and streptozotocin, or fluorouracil and streptotozocin in patients where doxorubicin is contraindicated.
In metastasizing tumors with intrahepatic growth, hepatic arterial occlusion or embolization can be used.
The first line of treatment are corticosteroids and other medicines used to suppress the immune system such as tacrolimus and sirolimus.
A intravenous nutrition such as total parenteral nutrition and/or a special diet may be necessary. Hematopoietic stem cell transplantation may be curative.
Surgery can usually cure VIPomas. However, in one-third to one-half of patients, the tumor has spread by the time of diagnosis and cannot be cured.
Heightened glucagon secretion can be treated with the administration of octreotide, a somatostatin analog, which inhibits the release of glucagon. Doxorubicin and streptozotocin have also been used successfully to selectively damage alpha cells of the pancreatic islets. These do not destroy the tumor, but help to minimize progression of symptoms.
The only curative therapy for glucagonoma is surgical resection, where the tumor is removed. Resection has been known to reverse symptoms in some patients.
Most patients with benign insulinomas can be cured with surgery. Persistent or recurrent hypoglycemia after surgery tends to occur in patients with multiple tumors. About 2% of patients develop diabetes mellitus after their surgery.
In people presenting with symptoms compatible with radiation enteropathy, the initial step is to identify what is responsible for causing the symptoms. Management is best with a multidisciplinary team including gastroenterologists, nurses, dietitians, surgeons and others.
Medical treatments include the use of hyperbaric oxygen which has beneficial effects in radiation proctitis or anal damage. Nutritional therapies include treatments directed at specific malabsorptive disorders such as low fat diets and vitamin B12 or vitamin D supplements, together with bile acid sequestrants for bile acid diarrhea and possibly antibiotics for small intestinal bacterial overgrowth. Probiotics have all been suggested as another therapeutic avenue.
Endoscopic therapies including argon plasma coagulation have been used for bleeding telangiectasia in radiation proctitis and at other intestinal sites, although there is a rick of perforation. Sucralfate enemas look promising in proctitis.
Surgical treatment may be needed for intestinal obstruction, fistulae, or perforation, which can happen in more severe cases. These can be fatal if patients present as an emergency, but with improved radiotherapy techniques are now less common.
Optimal treatment usually produces significant improvements in quality of life.
Prevention of radiation injury to the small bowel is a key aim of techniques such as brachytherapy, field size, multiple field arrangements, conformal radiotherapy techniques and intensity-modulated radiotherapy. Medications including ACE inhibitors, statins and probiotics have also been studied and reviewed.
Pancreatic neuroendocrine tumors (PanNETs, PETs, or PNETs), often referred to as "islet cell tumors", or "pancreatic endocrine tumors" are neuroendocrine neoplasms that arise from cells of the endocrine (hormonal) and nervous system within the pancreas.
PanNETs are a type of neuroendocrine tumor, representing about one third of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Many PanNETs are benign, while some are malignant. Aggressive PanNET tumors have traditionally been termed "islet cell carcinoma".
PanNETs are quite distinct from the usual form of pancreatic cancer, the majority of which are adenocarcinomas, which arises in the exocrine pancreas. Only 1 or 2% of clinically significant pancreas neoplasms are PanNETs.
Treatment is directed largely towards management of underlying cause:
- Replacement of nutrients, electrolytes and fluid may be necessary. In severe deficiency, hospital admission may be required for nutritional support and detailed advice from dietitians. Use of enteral nutrition by naso-gastric or other feeding tubes may be able to provide sufficient nutritional supplementation. Tube placement may also be done by percutaneous endoscopic gastrostomy, or surgical jejunostomy. In patients whose intestinal absorptive surface is severely limited from disease or surgery, long term total parenteral nutrition may be needed.
- Pancreatic enzymes are supplemented orally in pancreatic insufficiency.
- Dietary modification is important in some conditions:
- Gluten-free diet in coeliac disease.
- Lactose avoidance in lactose intolerance.
- Antibiotic therapy to treat Small Bowel Bacterial overgrowth.
- Cholestyramine or other bile acid sequestrants will help reducing diarrhoea in bile acid malabsorption.
In terms of treatment, acute hypoglycemia is reversed by raising the blood glucose, but in most forms of congenital hyperinsulinism hypoglycemia recurs and the therapeutic effort is directed toward preventing falls and maintaining a certain glucose level. Some of the following measures are often tried:
Corn starch can be used in feeding; unexpected interruptions of continuous feeding regimens can result in sudden, hypoglycemia, gastrostomy tube insertion (requires a minor surgical procedure) is used for such feeding.Prolonged glucocorticoid use incurs the many unpleasant side effects of Cushing's syndrome, while diazoxide can cause fluid retention requiring concomitant use of a diuretic, and prolonged use causes hypertrichosis. Diazoxide works by opening the K channels of the beta cells. Octreotide must be given by injection several times a day or a subcutaneous pump must be inserted every few days, octreotide can cause abdominal discomfort and responsiveness to octreotide often wanes over time. Glucagon requires continuous intravenous infusion, and has a very short "half life".
Nifedipine is effective only in a minority, and dose is often limited by hypotension.
Pancreatectomy (removal of a portion or nearly all of the pancreas) is usually a treatment of last resort when the simpler medical measures fail to provide prolonged normal blood sugar levels. For some time, the most common surgical procedure was removal of almost all of the pancreas, this cured some infants but not all. Insulin-dependent diabetes mellitus commonly develops, though in many cases it occurs many years after the pancreatectomy.Later it was discovered that a sizeable minority of cases of mutations were focal, involving overproduction of insulin by only a portion of the pancreas. These cases can be cured by removing much less of the pancreas, resulting in excellent outcomes with no long-term problems.
Symptoms of short bowel syndrome are usually addressed with medication. These include:
- Anti-diarrheal medicine (e.g. loperamide, codeine)
- Vitamin, mineral supplements and L-glutamine powder mixed with water
- H2 blocker and proton pump inhibitors to reduce stomach acid
- Lactase supplement (to improve the bloating and diarrhoea associated with lactose intolerance)
In 2004, the USFDA approved a therapy that reduces the frequency and volume of total parenteral nutrition (TPN), comprising: NutreStore (oral solution of glutamine) and Zorbtive (growth hormone, of recombinant DNA origin, for injection) together with a specialized oral diet. In 2012, an advisory panel to the USFDA voted unanimously to approve for treatment of SBS the agent teduglutide, a glucagon-like peptide-2 analog developed by NPS Pharmaceuticals, who intend to market the agent in the United States under the brandname Gattex. Teduglutide had been previously approved for use in Europe and is marketed under the brand Revestive by Nycomed.
Surgical procedures to lengthen dilated bowel include the Bianchi procedure, where the bowel is cut in half and one end is sewn to the other, and a newer procedure called serial transverse enteroplasty (STEP), where the bowel is cut and stapled in a zigzag pattern. Heung Bae Kim, MD, and Tom Jaksic, MD, both of Children's Hospital Boston, devised the STEP procedure in the early 2000s. The procedure lengthens the bowel of children with SBS and may allow children to avoid the need for intestinal transplantation. As of June 2009, Kim and Jaksic have performed 18 STEP procedures. The Bianchi and STEP procedures are usually performed by pediatric surgeons at quaternary hospitals who specialize in small bowel surgery.
Medications may consist of stool softeners and laxatives in IBS-C and antidiarrheals (e.g., opiate, opioid, or opioid analogs such as loperamide, codeine, diphenoxylate) if diarrhea is predominant.
Drugs affecting serotonin (5-HT) in the intestines can help reduce symptoms. On the other hand, many IBS-D patients report that SSRI type medications exacerbate spasms and diarrhea. This is thought to be due to the large number of serotonin receptors in the gut. 5HT3 antagonists such as ondansetron are effective in postinfectious IBS and diarrhea-dominant IBS due to their blockade of serotonin on 5HT3 receptors in the gut; the reason for their benefit is believed to be that excessive serotonin in the gut is thought to play a role in the pathogenesis of some subtypes of IBS. Certain atypical antipsychotic medications, such as clozapine and olanzapine, may also provide relief due to serotonergic properties these agents possess, acting on the same receptors as other medications in this specific category. Benefits may include reduced diarrhea, reduced abdominal cramps, and improved general well-being. Any nausea present may also respond to 5HT3 antagonists owing to their antiemetic properties. Serotonin stimulates the gut motility and so agonists can help constipation-predominant irritable bowel, while antagonists can help diarrhea-predominant irritable bowel. Selective serotonin reuptake inhibitors, SSRIs, frequently prescribed for panic and/or anxiety disorder and depression, affect serotonin in the gut, as well as the brain. The bowels are highly dependent on serotonin for neural communication. "Selective serotonin reuptake inhibitor antidepressants seem to promote global well-being in some patients with irritable bowel syndrome and, possibly, some improvement in abdominal pain and bowel symptoms, but this effect appears to be independent of improved depression. Further research is required."
Mast cells and the compound that they secrete are central to the pathophysiology and implicated in the treatment of IBS; some of the secreted mast cell mediators (and associated receptors) which have been implicated in symptoms of IBS or specific subtypes include: histamine (HRH1, HRH2, HRH3), tryptase and chymase (PAR2), serotonin (5-HT3), PGD2 (DP1). Histamine also causes epithelial secretion of chloride ions and water (associated with secretory diarrhea) by signaling through a receptor or ligand-gated ion channel that has not been identified as of 2015. A 2015 review noted that both H1-antihistamines and mast cell stabilizers have shown efficacy in reducing pain associated with visceral hypersensitivity in IBS; other lower quality studies have also suggested the benefit of these agents for IBS. In a related review on idiopathic mast cell activation syndromes (including IBS), a combined treatment approach using antileukotrienes, H1/H2-antihistamines, and a mast cell stabilizer are suggested.
For patients who do not adequately respond to dietary fiber, osmotic laxatives such as polyethylene glycol, sorbitol, and lactulose can help avoid "cathartic colon" which has been associated with stimulant laxatives. Among the osmotic laxatives, doses of 17–26 g/d of polyethylene glycol have been well studied. Lubiprostone (Amitiza) is a gastrointestinal agent used for the treatment of idiopathic chronic constipation and constipation-predominant IBS. It is well tolerated in adults, including elderly patients. As of July 20, 2006, lubiprostone had not been studied in pediatric patients. Lubiprostone is a bicyclic fatty acid (prostaglandin E1 derivative) that acts by specifically activating ClC-2 chloride channels on the apical aspect of gastrointestinal epithelial cells, producing a chloride-rich fluid secretion. These secretions soften the stool, increase motility, and promote spontaneous bowel movements. Unlike many laxative products, lubiprostone does not show signs of tolerance, dependency, or altered serum electrolyte concentration.
Bacterial overgrowth is usually treated with a course of antibiotics although whether antibiotics should be a first line treatment is a matter of debate. Some experts recommend probiotics as first line therapy with antibiotics being reserved as a second line treatment for more severe cases of SIBO. Prokinetic drugs are other options but research in humans is limited. A variety of antibiotics, including tetracycline, amoxicillin-clavulanate, fluoroquinolones, metronidazole, neomycin, cephalexin, trimethoprim-sulfamethoxazole, and nitazoxanide have been used; however, the best evidence is for the use of rifaximin.
A course of one week of antibiotics is usually sufficient to treat the condition. However, if the condition recurs, antibiotics can be given in a cyclical fashion in order to prevent tolerance. For example, antibiotics may be given for a week, followed by three weeks off antibiotics, followed by another week of treatment. Alternatively, the choice of antibiotic used can be cycled.
The condition that predisposed the patient to bacterial overgrowth should also be treated. For example, if the bacterial overgrowth is caused by chronic pancreatitis, the patient should be treated with coated pancreatic enzyme supplements.
Probiotics are bacterial preparations that alter the bacterial flora in the bowel to cause a beneficial effect. Animal research has demonstrated that probiotics have barrier enhancing, antibacterial, immune modulating and anti-inflammatory effects which may have a positive effect in the management of SIBO in humans. "Lactobacillus casei" has been found to be effective in improving breath hydrogen scores after 6 weeks of treatment presumably by suppressing levels of a small intestinal bacterial overgrowth of fermenting bacteria. The multi-strain preparation VSL#3 was found to be effective in suppressing SIBO. "Lactobacillus plantarum", "Lactobacillus acidophilus", and "Lactobacillus casei" have all demonstrated effectiveness in the treatment and management of SIBO. Conversely, "Lactobacillus fermentum" and "Saccharomyces boulardii" have been found to be ineffective. A combination of "Lactobacillus plantarum" and "Lactobacillus rhamnosus" has been found to be effective in suppressing bacterial overgrowth of abnormal gas producing organisms in the small intestine.
Probiotics are superior to antibiotics in the treatment of SIBO. A combination of probiotic strains has been found to produce better results than therapy with the antibiotic drug metronidazole and probiotics have been found to be effective in treating and preventing secondary lactase deficiency and small intestinal bacteria overgrowth in individuals suffering from post-infectious irritable bowel syndrome. Probiotics taken in uncomplicated cases of SIBO can usually result in the individual becoming symptom free. Probiotic therapy may need to be taken continuously to prevent the return of overgrowth of gas producing bacteria. A study by the probiotic yogurt producer Nestlé found that probiotic yogurt may also be effective in treating SIBO with evidence of reduced inflammation after 4 weeks of treatment.
An elemental diet taken for two weeks is an alternative to antibiotics for eliminating SIBO. An elemental diet works via providing nutrition for the individual while depriving the bacteria of a food source. Additional treatment options include the use of prokinetic drugs such as 5-HT4 receptor agonists or motilin agonists to extend the SIBO free period after treatment with an elemental diet or antibiotics. A diet void of certain foods that feed the bacteria can help alleviate the symptoms. For example, if the symptoms are caused by bacterial overgrowth feeding on indigestible carbohydrate rich foods, following a FODMAP restriction diet may help.
Multiple endocrine neoplasia type 1 (MEN-1 syndrome) or Wermer's syndrome is part of a group of disorders, the multiple endocrine neoplasias, that affect the endocrine system through development of neoplastic lesions in pituitary, parathyroid gland and pancreas.
Treatment for protein losing enteropathy depends upon the underlying condition, according to Rychik, et al this could mean treatment of hypoproteinemia or of the intestinal mucosa.
In terms of treatment for PLE after the "Fontan operation" treatment must be equal to the level of hypoproteinemia present. Therefore, it is useful to categorize patients based on their serum albumin levels, if less than normal (typically less than 3.5 g/dL) but greater than 2.5 g/dL, this can be seen as a mild form of protein losing enteropathy. Symptomatic management of edema with furosemide (and aldactone) can provide relief for the individual with mild hypoproteinemia.
A glucagonoma is a rare tumor of the alpha cells of the pancreas that results in the overproduction of the hormone glucagon. Alpha cell tumors are commonly associated with glucagonoma syndrome, though similar symptoms are present in cases of pseudoglucagonoma syndrome in the absence of a glucagon-secreting tumor.
It is important for MADD patients to maintain strength and fitness without exercising or working to exhaustion. Learning this balance may be more difficult than normally, as muscle pain and fatigue may be perceived differently from normal individuals.
Symptomatic relief from the effects of MADD may sometimes be achieved by administering ribose orally at a dose of approximately 10 grams per 100 pounds (0.2 g/kg) of body weight per day, and exercise modulation as appropriate. Taken hourly, ribose provides a direct but limited source of energy for the cells. Patients with myoadenylate deaminase deficiency do not retain ribose during heavy exercise, so supplementation may be required to rebuild levels of ATP.
Creatine monohydrate could also be helpful for AMPD patients, as it provides an alternative source of energy for anaerobic muscle tissue and was found to be helpful in the treatment of other, unrelated muscular myopathies.
To treat people with a deficiency of this enzyme, they must avoid needing gluconeogenesis to make glucose. This can be accomplished by not fasting for long periods, and eating high-carbohydrate food. They should avoid fructose containing foods (as well as sucrose which breaks down to fructose).
As with all single-gene metabolic disorders, there is always hope for genetic therapy, inserting a healthy copy of the gene into existing liver cells.
To relieve reactive hypoglycemia, the NIH recommends taking the following steps:
- Avoiding or limiting sugar intake;
- Exercising regularly; exercise increases sugar uptake which decreases excessive insulin release
- Eating a variety of foods, including meat, poultry, fish, or nonmeat sources of protein, foods such as whole-grains, fruits, nuts, vegetables, and dairy products;
- Choosing high-fiber foods.
Other tips to prevent sugar crashes include:
- Avoiding eating meals or snacks composed entirely of carbohydrates; simultaneously ingest fats and proteins, which have slower rates of absorption.
- Consistently choosing longer lasting, complex carbohydrates to prevent rapid blood-sugar dips in the event that one does consume a disproportionately large amount of carbohydrates with a meal
- Monitoring any effects medication may have on symptoms.
Low-carbohydrate diet and/or frequent small split meals is the first treatment of this condition. The first important point is to add small meals at the middle of the morning and of the afternoon, when glycemia would start to decrease. If adequate composition of the meal is found, the fall in blood glucose is thus prevented. Patients should avoid rapidly absorbable sugars and thus avoid popular soft drinks rich in glucose or sucrose. They should also be cautious with drinks associating sugar and alcohol, mainly in the fasting state.
As it is a short-term ailment, a sugar crash does not usually require medical intervention in most people. The most important factors to consider when addressing this issue are the composition and timing of foods.
Acute low blood sugar symptoms are best treated by consuming small amounts of sweet foods, so as to regain balance in the body’s carbohydrate metabolism. Suggestions include sugary foods that are quickly digested, such as:
- Dried fruit
- Soft drinks
- Juice
- Sugar as sweets, tablets or cubes.
The primary treatment goal is prevention of hypoglycemia and the secondary metabolic derangements by frequent feedings of foods high in glucose or starch (which is readily digested to glucose). To compensate for the inability of the liver to provide sugar, the total amount of dietary carbohydrate should approximate the 24-hour glucose production rate. The diet should contain approximately 65–70% carbohydrate, 10–15% protein, and 20–25% fat. At least a third of the carbohydrates should be supplied through the night, so that a young child goes no more than 3–4 hours without carbohydrate intake
In the last 30 years, two methods have been used to achieve this goal in young children: (1) continuous nocturnal gastric infusion of glucose or starch; and (2) night-time feedings of uncooked cornstarch. An elemental formula, glucose polymer, and/or cornstarch can be infused continuously through the night at a rate supplying 0.5–0.6 g/kg/h of glucose for an infant, or 0.3–0.4 for an older child. This method requires a nasogastric or gastrostomy tube and pump. Sudden death from hypoglycemia has occurred due to malfunction or disconnection, and periodic cornstarch feedings are now preferred to continuous infusion.
Cornstarch is an inexpensive way to provide gradually digested glucose. One tablespoon contains nearly 9 g carbohydrate (36 calories). Although it is safer, less expensive, and requires no equipment, this method does require that parents arise every 3–4 hours to administer the cornstarch. A typical requirement for a young child is 1.6 g/kg every 4 hours.
Long-term management should eliminate hypoglycemic symptoms and maintain normal growth. Treatment should achieve normal glucose, lactic acid, and electrolyte levels, and only mild elevations of uric acid and triglycerides.