Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
Most patients suffering from KTS have epilepsy that is resistant to anti-epileptic agents. Some patients showed a partial response to treatment, but very few were able to stop their epilepsy through treatment. One case was responsive to treatment using Phenobartbital and vigabatrin which are both anti-epileptic agents. Spasticity can be treated with baclofen, but not all patients are responsive to the treatment.
The caloric intake of children with SRS must be carefully controlled in order to provide the best opportunity for growth. If the child is unable to tolerate oral feeding, then enteral feeding may be used, such as the percutaneous endoscopic gastrostomy.
In children with limb-length differences or scoliosis, physiotherapy can alleviate the problems caused by these symptoms. In more severe cases, surgery to lengthen limbs may be required. To prevent aggravating posture difficulties children with leg length differences may require a raise in their shoe.
Growth hormone therapy is often prescribed as part of the treatment of SRS. The hormones are given by injection typically daily from the age of 2 years old through teenage years. It may be effective even when the patient does not have a growth hormone deficiency. Growth hormone therapy has been shown to increase the rate of growth in patients and consequently prompts 'catch up' growth. This may enable the child to begin their education at a normal height, improving their self-esteem and interaction with other children. The effect of growth hormone therapy on mature and final height is as yet uncertain. There are some theories suggesting that the therapy also assists with muscular development and managing hypoglycemia.
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower irritability, improved sociability, less self-injurious behaviour, less tactile defensiveness, fewer infections, more muscle tone, less photosensitivity and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve developmental delay, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
Currently there is no specific treatment for this condition. Management is supportive.
Management of individuals with SLOS is complex and often requires a team of specialists. Some of the congenital malformations (cleft palate) can be corrected with surgery. Other treatments have yet to be proven successful in randomized studies, however anecdotally they appear to cause improvements.
Management often includes the use of beta blockers such as propranolol or if not tolerated calcium channel blockers or ACE inhibitors.
Since angiotensin II receptor antagonists (ARBs) also reduce TGF-β, these drugs have been tested in a small sample of young, severely affected people with Marfan syndrome. In some, the growth of the aorta was reduced. However, a recent study published in NEJM demonstrated similar cardiac outcomes between the ARB, losartan, and the more established beta blocker therapy, atenolol.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Current trends in treating the disorder include medications for symptom-based treatments that aim to minimize the secondary characteristics associated with the disorder. If an individual is diagnosed with FXS, genetic counseling for testing family members at risk for carrying the full mutation or premutation is a critical first-step. Due to a higher prevalence of FXS in boys, the most commonly used medications are stimulants that target hyperactivity, impulsivity, and attentional problems. For co-morbid disorders with FXS, antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are utilized to treat the underlying anxiety, obsessive-compulsive behaviors, and mood disorders. Following antidepressants, antipsychotics such as Risperdal and Seroquel are used to treat high rates of self-injurious, aggressive and aberrant behaviors in this population (Bailey Jr et al., 2012). Anticonvulsants are another set of pharmacological treatments used to control seizures as well as mood swings in 13%–18% of individuals suffering from FXS. Drugs targeting the mGluR5 (metabotropic glutamate receptors) that are linked with synaptic plasticity are especially beneficial for targeted symptoms of FXS. Lithium is also currently being used in clinical trials with humans, showing significant improvements in behavioral functioning, adaptive behavior, and verbal memory. Alongside pharmacological treatments, environmental influences such as home environment and parental abilities as well as behavioral interventions such as speech therapy, sensory integration, etc. all factor in together to promote adaptive functioning for individuals with FXS.
Current pharmacological treatment centers on managing problem behaviors and psychiatric symptoms associated with FXS. However, as there has been very little research done in this specific population, the evidence to support the use of these medications in individuals with FXS is poor.
ADHD, which affects the majority of boys and 30% of girls with FXS, is frequently treated using stimulants. However, the use of stimulants in the fragile X population is associated with a greater frequency of adverse events including increased anxiety, irritability and mood lability. Anxiety, as well as mood and obsessive-compulsive symptoms, may be treated using SSRIs, although these can also aggravate hyperactivity and cause disinhibited behavior. Atypical antipsychotics can be used to stabilise mood and control aggression, especially in those with comorbid ASD. However, monitoring is required for metabolic side effects including weight gain and diabetes, as well as movement disorders related to extrapyramidal side effects such as tardive dyskinesia. Individuals with coexisting seizure disorder may require treatment with anticonvulsants.
There is no cure for Marfan syndrome, but life expectancy has increased significantly over the last few decades and is now similar to that of the average person. Regular checkups by a cardiologist are needed to monitor the health of the heart valves and the aorta. The syndrome is treated by addressing each issue as it arises and, in particular, preventive medication even for young children to slow progression of aortic dilation. The goal of treatment is to slow the progression of aortic dilation and damage to heart valves by eliminating arrythmias, minimizing the heart rate, and minimizing blood pressure.
There are no current treatments or cures for the underlying defects of FXS. Management of FXS may include speech therapy, behavioral therapy, sensory integration occupational therapy, special education, or individualised educational plans, and, when necessary, treatment of physical abnormalities. Persons with fragile X syndrome in their family histories are advised to seek genetic counseling to assess the likelihood of having children who are affected, and how severe any impairments may be in affected descendants.
Each child is different and it entirely depends on which sutures are fused and how it is affecting the child as to how it is treated. Some children have severe breathing issues due to shallow mid face and may require a tracheostomy. All should be treated at a specialist centre. Cranio bands are not used in the UK.
Surgery is typically used to prevent the closure of sutures of the skull from damaging the brain's development. Without surgery, blindness and mental retardation are typical outcomes. Craniofacial surgery is a discipline of both plastic surgery and oral and maxillofacial surgery (OMFS) . To move the orbits forward, craniofacial surgeons expose the skull and orbits and reshape the bone. To treat the midface deficiency, craniofacial surgeons can move the lower orbit and midface bones forward. For jaw surgery, either plastic surgeons or OMFS surgeons can perform these operations.
Crouzon patients tend to have multiple sutures involved, most specifically bilateral coronal craniosynostoses, and either open vault surgery or strip craniectomy (if child is under 6 months) can be performed. In the later scenario, a helmet is worn for several months following surgery.
Once treated for the cranial vault symptoms, Crouzon patients generally go on to live a normal lifespan.
Like many mitochondrial diseases, there is no cure for MERRF, no matter the means for diagnosis of the disease. The treatment is primarily symptomatic. High doses of Coenzyme Q10, B complex vitamins and L-Carnitine are the drugs that patients are treated with in order to account for the altered metabolic processed resulting in the disease. There is very little success with these treatments as therapies in hopes of improving mitochondrial function. The treatment only alleviates symptoms and these do not prevent the disease from progressing. Patients with concomitant disease, such as diabetes, deafness or cardiac disease, are treated in combination to manage symptoms.
SGBS is similar to another overgrowth syndrome called Beckwith–Wiedemann syndrome.
SGBS Cells are a unique tool to study the function of Human adipocyte biology. These cells are similar to human primary preadipocytes, and may or may not become a popular model instead of Mouse 3T3-L1 cells to study the secretion and adipokine profile in the future. This cellular tool has been described and developed by Dr. Martin Wabitsch, University of Ulm, Germany.
Prophylactic mastectomy to reduce the risk of breast cancer is an option.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
Recommendations for individuals from families affected by the syndrome include:
- Avoidance of radiation therapy to reduce risk of secondary radiation induced malignancies,
- Children and adults undergo comprehensive annual physical examination,
- Women undergo age specific breast cancer monitoring beginning at age 25 years, and
- All patients should consult a physician promptly for evaluation of lingering symptoms and illnesses.
It is helpful to co-ordinate clinical care as much as possible, this may be managed best by a consultant endocrinologist as the most active management is going to relate to the management of lipodystrophy, insulin resistance, diabetes and testosterone replacement therapy and growth hormone replacement if required. Other local specialists could provide care when this is needed.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
Treatment is only necessary if the degree of curvature is sufficient to cause disability or if it causes emotional distress. Splinting does not routinely correct the deformity. Surgical treatments are closing wedge osteotomy, opening wedge osteotomy, and reversed wedge osteotomy. Radiographs of the fingers are useful in planning the surgical procedure. Severe clinodactyly may require soft tissue alterations to the digit such as release of skin, extensor tendon relocation, and collateral ligament advancement.