Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Induction chemotherapy is the treatment adapted for shrinking the tonsil tumor. It is given prior to other treatments, hence, the term induction. After the therapy is completed, the patient is asked to rest and is evaluated over a period of time. Then the patient is given chemo-radiation therapy (a combination of chemotherapy and radiation) to completely destroy the tumor cells.
Early radio-sensitive tumors are treated by radiotherapy along with irradiation of cervical nodes. The radiation uses high-energy X-rays, electron beams, or radioactive isotopes to destroy cancer cells.
One such development is in the delivery of doxorubicin. While it is an effective inducer of apoptosis, doxorubicin is quickly filtered out of the body. By loading a PEG-liposome with doxorubicin the circulation time and localization to tumors greatly increases. Cancerous tumors characteristically have extensive angiogenesis and leaky vasculatures, which causes the PEG-liposomes to naturally accumulate in the tumor. This also allows for patients to receive lower and fewer doses of the drug and experience fewer side effects. This is also being attempted with nanoparticles but has not been tested on FDCS. In 2008 COP plus (PEG)-liposomal doxorubicin went into a clinical trial for an FDCS patient to replace the CHOP regimen, and after 5 years the patient remains in CR.
Various chemotherapy agents, including temozolomide, dacarbazine (also termed DTIC), immunotherapy (with interleukin-2 (IL-2) or interferon (IFN)), as well as local perfusion, are used by different centers. The overall success in metastatic melanoma is quite limited.
IL-2 (Proleukin) was the first new therapy approved (1990 Europe, 1992 USA) for the treatment of metastatic melanoma in 20 years. Studies have demonstrated that IL-2 offers the possibility of a complete and long-lasting remission in this disease, although only in a small percentage of patients. Intralesional IL-2 for in-transit metastases has a high complete response rate ranging from 40 to 100%.
By 2005 a number of new agents and novel approaches were under evaluation and showed promise.
In 2009 Clinical trial participation was considered the standard of care for metastatic melanoma.
Therapies for metastatic melanoma include biologic immunotherapy agents ipilimumab, pembrolizumab, and nivolumab; BRAF inhibitors, such as vemurafenib and dabrafenib; and a MEK inhibitor trametinib.
Ongoing research is looking at treatment by adoptive cell transfer. For this purpose, application of prestimulated or modified T cells or dendritic cells is possible.
Radiotherapy is commonly used to treat Merkel-cell cancers. The radiotherapy fields used are usually very large so as to cover sufficient areas of skin. This is necessary because of MCC's aggressive local and regional metastatic behavior.
Adjuvant radiotherapy has been shown to be effective in reducing the rates of recurrence and in increasing the survival of patients with MCC. Patients who present with no distant metastases and a negative sentinel lymph node biopsy have a very good prognosis when treated with both surgery and radiotherapy (approximately 90% survival rate at five years).
Metastatic MCC may respond to treatment with chemotherapy and/or radiation, but current multimodal therapies are usually not curative. Intensive treatment can be effective in shrinking the tumor and improving operability when tumors are too large to be removed or located in a place where removal would be difficult or dangerous, or in palliation of signs and symptoms caused by metastatic tumors.
Some patients have no symptoms, spontaneous remission, or a relapsing/remitting course, making it difficult to decide whether therapy is needed. In 2002, authors from Sapienza University of Rome stated on the basis of a comprehensive literature review that "clinical observation without treatment is advisable when possible."
Therapeutic options include surgery, radiation therapy, and chemotherapy. Surgery is used to remove single lymph nodes, central nervous system lesions, or localized cutaneous disease. In 2014, Dalia and colleagues wrote that for patients with extensive or systemic Rosai–Dorfman disease, "a standard of care has not been established" concerning radiotherapy and chemotherapy.
Standard excision is still being done by most surgeons. Unfortunately, the recurrence rate is exceedingly high (up to 50%). This is due to the ill-defined visible surgical margin, and the facial location of the lesions (often forcing the surgeon to use a narrow surgical margin). The narrow surgical margin used, combined with the limitation of the standard "bread-loafing" technique of fixed tissue histology — result in a high "false negative" error rate, and frequent recurrences. Margin control (peripheral margins) is necessary to eliminate the false negative errors. If bread loafing is used, distances from sections should approach 0.1 mm to assure that the method approaches complete margin control.
Mohs surgery has been done with cure rate reported to be as low as 77%, and as high as 95% by another author. The "double scalpel" peripheral margin controlled excision method approximates the Mohs method in margin control, but requires a pathologist intimately familiar with the complexity of managing the vertical margin on the thin peripheral sections and staining methods.
Some melanocytic nevi, and melanoma-in-situ (lentigo maligna) have resolved with an experimental treatment, imiquimod (Aldara) topical cream, an immune enhancing agent. Some dermasurgeons are combining the 2 methods: surgically excising the cancer and then treating the area with Aldara cream postoperatively for three months.
Sentinel lymph node biopsy (SLNB) detects MCC spread in one third of patients whose tumors would have otherwise been clinically and radiologically understaged, and who may not have received treatment to the involved node bed. There was a significant benefit of adjuvant nodal therapy, but only when the SLNB was positive. Thus, SLNB is important for both prognosis and therapy and should be performed routinely for patients with MCC. In contrast, computed tomographic scans have poor sensitivity in detecting nodal disease as well as poor specificity in detecting distant disease.
Newer cases are also starting to be treated by taxotere and gemcitabine. Taxotere is similar to Oncovin used in CHOP; it irreversibly binds beta tubulin halting formation of microtubules. Taxotere has an added benefit though; it also phosphorylates bcl-2 to halt the anti-apoptotic pathway. The dual effect of taxotere on integral cancer pathways makes it a more potent drug than Oncovin. Gemcitabene is a nucleoside analog and when incorporated into DNA during replication leads to apoptosis; the fluorine on the 2’ carbon atom stops other nucleosides from attaching. The most important part of this combination therapy, however, is the synergism between the drugs. While researchers are not entirely sure of the mechanism, there is evidence of synergistic effects of taxotere and gemcitabine when used in combination. This allows for decreased dosages of each single agent with an increased apoptotic response.
Specific treatment depends on the location, type, and stage of the tumour. Treatment may involve surgery, radiotherapy, or chemotherapy, alone or in combination. This is a specialised area which requires the coordinated expertise of ear, nose and throat (ENT) surgeons (Otorhinolaryngologists) and Oncologists. A severely affected patient may require a laryngectomy, the complete or partial removal of the vocal cords.
Due to the high risk of recurrence and ensuing problems, close monitoring of dogs undergoing chemotherapy is important. The same is true for dogs that have entered remission and ceased treatment. Monitoring for disease and remission/recurrence is usually performed by palpation of peripheral lymph nodes. This procedure detects gross changes in peripheral lymph nodes. Some of the blood tests used in diagnosing lymphoma also offer greater objectivity and provide an earlier warning of an animal coming out of remission.
Complete cure is rare with lymphoma and treatment tends to be palliative, but long remission times are possible with chemotherapy. With effective protocols, average first remission times are 6 to 8 months. Second remissions are shorter and harder to accomplish. Average survival is 9 to 12 months. The most common treatment is a combination of cyclophosphamide, vincristine, prednisone, L-asparaginase, and doxorubicin. Other chemotherapy drugs such as chlorambucil, lomustine (CCNU), cytosine arabinoside, and mitoxantrone are sometimes used in the treatment of lymphoma by themselves or in substitution for other drugs. In most cases, appropriate treatment protocols cause few side effects, but white blood cell counts must be monitored.
Allogeneic and autologous stem cell transplantations (as is commonly done in humans) have recently been shown to be a possible treatment option for dogs. Most of the basic research on transplantation biology was generated in dogs. Current cure rates using stem cell therapy in dogs approximates that achieved in humans, 40-50%.
When cost is a factor, prednisone used alone can improve the symptoms dramatically, but it does not significantly affect the survival rate. The average survival times of dogs treated with prednisone and untreated dogs are both one to two months. Using prednisone alone can cause the cancer to become resistant to other chemotherapy agents, so it should only be used if more aggressive treatment is not an option.
Isotretinoin can be used to treat cutaneous lymphoma.
Radiation therapy has become the preferred treatment. Its advantage is that it treats the entire nasal cavity together with the affected bone and has shown the greatest improvement in survival. The radiation therapy is typically delivered in 10-18 treatment sessions over the course of 2–4 weeks.
Radiation therapy has a multitude of accompanying side effects and should be recommended on a case-by-case basis. Dogs in which nose bleeds are observed have an average life expectancy of 88 days. In instances where nosebleeds are not seen, the prognosis is slightly less grim. On average, a dog with nasal cancer has a life expectancy of 95 days.
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
Treatment is dependent if the lymphoma is causing issues in regards to the overall health of the individual. Since this a slow moving cancer, many patients start treatment when the symptoms appear. If the individual tests positive for hepatitis C, then anti-viral treatment is suggested since it will often get rid of the lymphoma as well. If further treatment is required the options include chemotherapy, monoclonal antibodies, and/or radiation. Radiation therapy is used for stage I and II nodal marginal zone NHL. Clinical trials show success in treatment when using drugs such as bendamustine and lenalidomida in combination with rituximab.
a) Surgical resection is mainstay of treatment, whenever possible. If tumor is completely removed, post-operative radiation therapy is typically not needed since acinic cell is considered a low-grade histology. Post-operative radiation therapy for acinic cell carcinoma is used if: 1) margins are positive, 2) incomplete resection, 3) tumor invades beyond gland, 4) positive lymph nodes.
b) Neutron beam radiation
c) Conventional radiation
d) Chemotherapy
The original route of treatment for MALT is antibiotics to treat an underlying infection such as H.pylori. H.pylori is directly related to the development of this lymphoma. Since most patients respond well to this treatment, then no further treatment is needed. If the lymphoma is not linked to an infection, then radiotherapy and chemotherapy are needed. If the disease is more advanced, then immunoradiotherapy with chemotherapy will be needed. Among the common first-line treatments are bendamustine plus rituximab and R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone). Recently, antibiotic therapy such as doxycycline has been shown to be effective in marginal zone lymphoma that affects the area around the eye ("ocular adnexal marginal zone lymphoma").
Treatment of small melanomas is often not necessary, but large tumors can cause discomfort and are usually surgically removed. Cisplatin and cryotherapy can be used to treat small tumors less than 3 centimeters, but tumors may reoccur. Cimetidine, a histamine stimulator, can cause tumors to regress in some horses, but may take up to 3 months to produce results and multiple treatments may be needed throughout the horse's life. There are few viable treatment options for horses with metastatic melanoma. However, gene therapy injections utilizing interleukin-12 and 18-encoding DNA plasmids have shown promise in slowing the progression of tumors in patients with metastatic melanoma.
The Stehlin Foundation currently offers DSRCT patients the opportunity to send samples of their tumors free of charge for testing. Research scientists are growing the samples on nude mice and testing various chemical agents to find which are most effective against the individual's tumor.
Patients with advanced DSRCT may qualify to participate in clinical trials that are researching new drugs to treat the disease.
Paget's disease of the breast is a type of cancer of the breast. Treatment usually involves a lumpectomy or mastectomy to surgically remove the tumour. Chemotherapy and/or radiotherapy may be necessary, but the specific treatment often depends on the characteristics of the underlying breast cancer.
Invasive cancer or extensive ductal carcinoma "in situ" is primarily treated with modified radical mastectomies. The procedure consists in the removal of the breast, the lining over the chest muscles and a part of the lymph nodes from under the arm. In cases of noninvasive cancers, simple mastectomies are performed in which only the breast with the lining over the chest muscles is removed.
Patients suffering from cancer that has not spread beyond the nipple and the surrounding area are often treated with breast-conserving surgery or lumpectomy. They usually undergo radiation therapy after the actual procedure to prevent recurrence. A breast-conserving surgery consists in the removal of the nipple, areola and the part of the breast that is affected by cancer.
In most cases, adjuvant treatment is part of the treatment schema. This type of treatment is normally given to patients with cancer to prevent a potential recurrence of the disease. Whether adjuvant therapy is needed depends upon the type of cancer and whether the cancer cells have spread to the lymph nodes. In Paget's disease, the most common type of adjuvant therapy is radiation following breast-conservative surgery.
Adjuvant therapy may also consist of anticancer drugs or hormone therapies. Hormonal therapy reduces the production of hormones within the body, or prevents the hormones from stimulating the cancer cells to grow, and it is commonly used in cases of invasive cancer by means of drugs such as tamoxifen and anastrozole.
Breast implant-associated ALCL is a recently recognized lymphoma and definitive management and therapy is under evaluation. However, it appears that removal of the implant, and resection of the capsule around the implant as well as evaluation by medical and surgical oncologists are cornerstones. Still under evaluation is the extent of capsulectomy: partial versus complete capsulectomy; similarly it is not defined the significance of replacement of the implant in the affected breast, or the removal of contralateral implant. Similarly, the value of radiation therapy and chemotherapy are under evaluation.
Currently, there is a drug, LDK378, undergoing Phase III clinical trials at Vanderbilt University that targets ALK positive small cell lung cancer, and has showed clinical promise in its previous clinical trials. Because approximately 70% of ALCL neoplasms are also ALK positive, there is hope that similar highly selective and potent ALK inhibitors may be used in the future to treat ALK positive cases of ALCL.
For HHV-8-negative MCD (idiopathic MCD), the following treatments have been used: corticosteroids, rituximab, monoclonal antibodies against IL-6 such as tocilizumab and siltuximab, and the immunomodulator thalidomide.
Prior to 1996 MCD carried a poor prognosis of about 2 years, due to autoimmune hemolytic anemia and non-Hodgkin's lymphoma which may arise as a result of proliferation of infected cells. The timing of diagnosis, with particular attention to the difficulty of determining the cause of B symptoms without a CT scan and lymph node biopsy, may have a significant impact on the prognosis and risk of death. Left untreated, MCD usually gets worse and becomes increasingly difficult and unresponsive to current treatment regimens.
Siltuximab prevents it from binding to the IL-6 receptor, was approved by the U.S. Food and Drug Administration for the treatment of multicentric Castleman disease on April 23, 2014. Preliminary data suggest that treatment siltuximab may achieve tumour and symptomatic response in 34% of patients with MCD.
Other treatments for multicentric Castleman disease include the following:
- Corticosteroids
- Chemotherapy
- Thalidomide
In ES-SCLC, combination chemotherapy is the standard of care, with radiotherapy added only to palliate symptoms such as dyspnea, pain from liver or bone metastases, or for treatment of brain metastases, which, in small-cell lung carcinoma, typically have a rapid, if temporary, response to whole brain radiotherapy.
Combination chemotherapy consists of a wide variety of agents, including cisplatin, cyclophosphamide, vincristine and carboplatin. Response rates are high even in extensive disease, with between 15% and 30% of subjects having a complete response to combination chemotherapy, and the vast majority having at least some objective response. Responses in ES-SCLC are often of short duration, however.
If complete response to chemotherapy occurs in a subject with SCLC, then prophylactic cranial irradiation (PCI) is often used in an attempt to prevent the emergence of brain metastases. Although this treatment is often effective, it can cause hair loss and fatigue. Prospective randomized trials with almost two years follow-up have not shown neurocognitive ill-effects. Meta-analyses of randomized trials confirm that PCI provides significant survival benefits.
Treatment of some other, more aggressive, forms of lymphoma can result in a cure in the majority of cases, but the prognosis for patients with a poor response to therapy is worse. Treatment for these types of lymphoma typically consists of aggressive chemotherapy, including the CHOP or R-CHOP regimen. A number of people are cured with first-line chemotherapy. Most relapses occur within the first two years, and the relapse risk drops significantly thereafter. For people who relapse, high-dose chemotherapy followed by autologous stem cell transplantation is a proven approach.
Determination of treatment options depends on certain factors, some of which affect internal organs and others that affect personal appearance. When determining treatment, oncologists consider the initial location the tumor, the likelihood of body function deterioration, the effect on appearance, and the patient's potential response to chemotherapy and radiation. Surgery is the least successful of the treatment options; the tumor cannot be completely removed because it develops within the cells. Chemotherapy follows surgery to shrink or eliminate the remaining cancer cells.
Stem cell research under clinical trial shows promise to replace lost cells.
The aggressiveness of this cancer requires the response of a large team of specialists, possibly including a pediatric surgeon, oncologist, hematologist, specialty nurse, and rehabilitation specialists. Social workers and psychologists aid recovery by building a system of emotional support. Treatment is harsh on the body and may result in side effects including mood swings, learning difficulties, memory loss, physical deformations or restrictions, and potential risk of secondary cancers.
Treatment and survival is determined, to a great extent, by whether or not a cancer remains localized or spreads to other locations in the body. If the cancer metastasizes to other tissues or organs it usually dramatically increases a patient's likelihood of death. Some cancers—such as some forms of leukemia, a cancer of the blood, or malignancies in the brain—can kill without spreading at all.
Once a cancer has metastasized it may still be treated with radiosurgery, chemotherapy, radiation therapy, biological therapy, hormone therapy, surgery, or a combination of these interventions ("multimodal therapy"). The choice of treatment depends on a large number of factors, including the type of primary cancer, the size and location of the metastases, the patient's age and general health, and the types of treatments used previously. In patients diagnosed with CUP it is often still possible to treat the disease even when the primary tumor cannot be located.
Current treatments are rarely able to cure metastatic cancer though some tumors, such as testicular cancer and thyroid cancer, are usually curable.
Palliative care, care aimed at improving the quality of life of people with major illness, has been recommended as part of management programs for metastasis.