Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
GCNIS is generally treated by radiation therapy and/or orchiectomy. Chemotherapy used for metastatic germ cell tumours may also eradicate GCNIS.
The usual chemotherapy regimen has limited efficacy in tumours of this type, although Imatinib has shown some promise. There is no current role for radiotherapy.
The usual treatment is surgery. The surgery for females usually is a fertility-sparing unilateral salpingo-oophorectomy. For malignant tumours, the surgery may be radical and usually is followed by adjuvant chemotherapy, sometimes by radiation therapy. In all cases, initial treatment is followed by surveillance. Because in many cases Leydig cell tumour does not produce elevated tumour markers, the focus of surveillance is on repeated physical examination and imaging.
In males, a radical inguinal orchiectomy is typically performed. However, testes-sparing surgery can be used to maintain fertility in children and young adults. This approach involves an inguinal or scrotal incision and ultrasound guidance if the tumour is non-palpable. This can be done because the tumour is typically unifocal, not associated with precancerous lesions, and is unlikely to recur.
The prognosis is generally good as the tumour tends to grow slowly and usually is benign: 10% are malignant. For malignant tumours with undifferentiated histology, prognosis is poor.
Standard treatment would include surgical exploration via laparotomy. Laparoscopy may be an option if the surgeon is particularly skilled in removing ovarian neoplasms via laparoscopy intact. If the diagnosis of gonadoblastoma is certain, a bilateral salpingo-oophorectomy (BSO) should be performed to remove both the primary tumor and the dysgenic contralateral ovary. If uninvolved, the uterus should be left intact. Modern reproductive endocrinology technology allows patients post BSO to achieve pregnancy via in-vitro fertilization (IVF) with a donor egg.
The three basic types of treatment are surgery, radiation therapy, and chemotherapy.
Surgery is performed by urologists; radiation therapy is administered by radiation oncologists; and chemotherapy is the work of medical oncologists. In most patients with testicular cancer, the disease is cured readily with minimal long-term morbidity. While treatment success depends on the stage, the average survival rate after five years is around 95%, and stage 1 cancers cases, if monitored properly, have essentially a 100% survival rate.
Radiation may be used to treat stage II seminoma cancers, or as adjuvant (preventative) therapy in the case of stage I seminomas, to minimize the likelihood that tiny, non-detectable tumors exist and will spread (in the inguinal and para-aortic lymph nodes). Radiation is ineffective against and is therefore never used as a primary therapy for nonseminoma.
The usual treatment is surgery. The surgery usually is a fertility-sparing unilateral salpingo-oophorectomy. For malignant tumours, the surgery may be radical and usually is followed by adjuvant chemotherapy, sometimes by radiation therapy. In all cases, initial treatment is followed by surveillance. Because in many cases Sertoli–Leydig cell tumour does not produce elevated tumour markers, the focus of surveillance is on repeated physical examination and imaging. Given that many cases of Sertoli–Leydig cell tumor of the ovary are hereditary, referral to a clinical genetics service should be considered.
The prognosis is generally good as the tumour tends to grow slowly and usually is benign: 25% are malignant. For malignant tumours with undifferentiated histology, prognosis is poor.
Women with benign germ cell tumors such as mature teratomas (dermoid cysts) are cured by ovarian cystectomy or oophorectomy. In general, all patients with malignant germ cell tumors will have the same staging surgery that is done for epithelial ovarian cancer. If the patient is in her reproductive years, an alternative is unilateral salpingoophorectomy, while the uterus, the ovary, and the fallopian tube on the opposite side can be left behind. This isn't an option when the cancer is in both ovaries. If the patient has finished having children, the surgery involves complete staging including salpingoophorectomy on both sides as well as hysterectomy.
Most patients with germ cell cancer will need to be treated with combination chemotherapy for at least 3 cycles. The chemotherapy regimen most commonly used in germ cell tumors is called PEB (or BEP), and consists of bleomycin, etoposide, a platinum-based antineoplastic (cisplatin).
If ovarian cancer recurs, it is considered partially platinum-sensitive or platinum-resistant, based on the time since the last recurrence treated with platins: partially platinum-sensitive cancers recurred 6–12 months after last treatment, and platinum-resistant cancers have an interval of less than 6 months. Second-line chemotherapy can be given after the cancer becomes symptomatic, because no difference in survival is seen between treating asymptomatic (elevated CA-125) and symptomatic recurrences.
For platinum-sensitive tumors, platins are the drugs of choice for second-line chemotherapy, in combination with other cytotoxic agents. Regimens include carboplatin combined with pegylated liposomal doxorubicin, gemcitabine, or paclitaxel. Carboplatin-doublet therapy can be combined with paclitaxel for increased efficacy in some cases. Another potential adjuvant therapy for platinum-sensitive recurrences is olaparib, which may improve progression-free survival but has not been shown to improve overall survival. (Olaparib, a PARP inhibitor, was approved by the US FDA for use in BRCA-associated ovarian cancer that had previously been treated with chemotherapy.) For recurrent germ cell tumors, an additional 4 cycles of BEP chemotherapy is the first-line treatment for those tho have been treated with surgery or platins.
If the tumor is determined to be platinum-resistant, vincristine, dactinomycin, and cyclophosphamide (VAC) or some combination of paclitaxel, gemcitabine, and oxaliplatin may be used as a second-line therapy.
For platinum-resistant tumors, there are no high-efficacy chemotherapy options. Single-drug regimens (doxorubicin or topotecan) do not have high response rates, but single-drug regimens of topotecan, pegylated liposomal doxorubicin, or gemcitabine are used in some cases. Topotecan cannot be used in people with an intestinal blockage. Paclitaxel used alone is another possible regimen, or it may be combined with liposomal doxorubicin, gemcitabine, cisplatin, topotecan, etoposide, or cyclophosphamide. ( See also Palliative care below.)
Dysgerminomas are most effectively treated with radiation, though this can cause infertility and is being phased out in favor of chemotherapy. Radiation therapy does not improve survival in people with well-differentiated tumors.
In stage 1c and 2 cancers, radiation therapy is used after surgery if there is the possibility of residual disease in the pelvis but the abdomen is cancer-free. Radiotherapy can also be used in palliative care of advanced cancers. A typical course of radiotherapy for ovarian cancer is 5 days a week for 3–4 weeks. Common side effects of radiotherapy include diarrhea, constipation, and frequent urination.
The 1997 International Germ Cell Consensus Classification is a tool for estimating the risk of relapse after treatment of malignant germ cell tumor.
A small study of ovarian tumors in girls reports a correlation between cystic and benign tumors and, conversely, solid and malignant tumors. Because the cystic extent of a tumor can be estimated by ultrasound, MRI, or CT scan before surgery, this permits selection of the most appropriate surgical plan to minimize risk of spillage of a malignant tumor.
Access to appropriate treatment has a large effect on outcome. A 1993 study of outcomes in Scotland found that for 454 men with non-seminomatous (non-germinomatous) germ cell tumors diagnosed between 1975 and 1989, 5-year survival increased over time and with earlier diagnosis. Adjusting for these and other factors, survival was 60% higher for men treated in a cancer unit that treated the majority of these men, even though the unit treated more men with the worst prognosis.
Choriocarcinoma of the testicles has the worst prognosis of all germ cell cancers
Unlike classical seminoma, spermatocytic seminomas rarely metastasise, so radical orchidectomy alone is sufficient treatment, and retroperitoneal lymph node dissection and adjuvant chemotherapy or radiotherapy are generally not required.
Spermatocytic seminomas are not considered a subtype of seminoma and unlike other germ cell tumours do not arise from intratubular germ cell neoplasia.
Due to the difficulty in identifying the tumour using imaging techniques, an orchiectomy is often performed. The majority of sertoli cell tumours are benign, so this is sufficient. There is no documented benefit of chemotherapy or radiotherapy.
A retrospective study of 83 women with sex cord–stromal tumours (73 with granulosa cell tumour and 10 with Sertoli-Leydig cell tumour), all diagnosed between 1975 and 2003, reported that survival was higher with age under 50, smaller tumour size, and absence of residual disease. The study found no effect of chemotherapy. A retrospective study of 67 children and adolescents reported some benefit of cisplatin-based chemotherapy.
Germinomas, like several other types of germ cell tumor, are sensitive to both chemotherapy and radiotherapy. For this reason, treatment with these methods can offer excellent chances of longterm survival, even cure.
Although chemotherapy can shrink germinomas, it is not generally recommended alone unless there are contraindications to radiation. In a study in the early 1990s, carboplatinum, etoposide and bleomycin were given to 45 germinoma patients, and about half the patients relapsed. Most of these relapsed patients were then recovered with radiation or additional chemotherapy.
Intratesticular masses that appear suspicious on an ultrasound should be treated with an inguinal orchiectomy. The pathology of the removed testicle and spermatic cord indicate the presence of the seminoma and assist in the staging. Tumors with both seminoma and nonseminoma elements or that occur with the presence of AFP should be treated as nonseminomas. Abdominal CT or MRI scans as well as chest imaging are done to detect for metastasis. The analysis of tumor markers also helps in staging.
The preferred treatment for most forms of stage 1 seminoma is active surveillance. Stage 1 seminoma is characterized by the absence of clinical evidence of metastasis. Active surveillance consists of periodic history and physical examinations, tumor marker analysis, and radiographic imaging. Around 85-95% of these cases will require no further treatment. Modern radiotherapy techniques as well as one or two cycles of single-agent carboplatin have been shown to reduce the risk of relapse, but carry the potential of causing delayed side effects. Regardless of treatment strategy, stage 1 seminoma has nearly a 100% cure rate.
Stage 2 seminoma is indicated by the presence of retroperitoneal metastasis. Cases require radiotherapy or, in advanced cases, combination chemotherapy. Large residual masses found after chemotherapy may require surgical resection. Second-line treatment is the same as for nonseminomas.
Stage 3 seminoma is characterized by the presence of metastasis outside the retroperitoneum—the lungs in "good risk" cases or elsewhere in "intermediate risk" cases. This is treated with combination chemotherapy. Second-line treatment follows nonseminoma protocols.
A prospective study of ovarian sex cord–stromal tumours in children and adolescents began enrolling participants in 2005.
The primary management of cryptorchidism is watchful waiting, due to the high likelihood of self-resolution. Where this fails, a surgery, called orchiopexy, is effective if inguinal testes have not descended after 4–6 months. Surgery is often performed by a pediatric urologist or pediatric surgeon, but in many communities still by a general urologist or surgeon.
When the undescended testis is in the inguinal canal, hormonal therapy is sometimes attempted and very occasionally successful. The most commonly used hormone therapy is human chorionic gonadotropin (HCG). A series of hCG injections (10 injections over 5 weeks is common) is given and the status of the testis/testes is reassessed at the end. Although many trials have been published, the reported success rates range widely, from roughly 5 to 50%, probably reflecting the varying criteria for distinguishing retractile testes from low inguinal testes. Hormone treatment does have the occasional incidental benefits of allowing confirmation of Leydig cell responsiveness (proven by a rise of the testosterone by the end of the injections) or inducing additional growth of a small penis (via the testosterone rise). Some surgeons have reported facilitation of surgery, perhaps by enhancing the size, vascularity, or healing of the tissue. A newer hormonal intervention used in Europe is the use of GnRH analogs such as nafarelin or buserelin; the success rates and putative mechanism of action are similar to hCG, but some surgeons have combined the two treatments and reported higher descent rates. Limited evidence suggests that germ cell count is slightly better after hormone treatment; whether this translates into better sperm counts and fertility rates at maturity has not been established. The cost of either type of hormone treatment is less than that of surgery and the chance of complications at appropriate doses is minimal. Nevertheless, despite the potential advantages of a trial of hormonal therapy, many surgeons do not consider the success rates high enough to be worth the trouble since the surgery itself is usually simple and uncomplicated.
In cases where the testes are identified preoperatively in the inguinal canal, orchiopexy is often performed as an outpatient and has a very low complication rate. An incision is made over the inguinal canal. The testis with accompanying cord structure and blood supply is exposed, partially separated from the surrounding tissues ("mobilized"), and brought into the scrotum. It is sutured to the scrotal tissue or enclosed in a "subdartos pouch." The associated passage back into the inguinal canal, an inguinal hernia, is closed to prevent re-ascent.
In patients with intraabdominal maldescended testis, laparoscopy is useful to see for oneself the pelvic structures, position of the testis and decide upon surgery ( single or staged procedure ).
Surgery becomes more complicated if the blood supply is not ample and elastic enough to be stretched into the scrotum. In these cases, the supply may be divided, some vessels sacrificed with expectation of adequate collateral circulation. In the worst case, the testis must be "auto-transplanted" into the scrotum, with all connecting blood vessels cut and reconnected ("anastomosed").
When the testis is in the abdomen, the first stage of surgery is exploration to locate it, assess its viability, and determine the safest way to maintain or establish the blood supply. Multi-stage surgeries, or autotransplantation and anastomosis, are more often necessary in these situations. Just as often, intra-abdominal exploration discovers that the testis is non-existent ("vanished"), or dysplastic and not salvageable.
The principal major complication of all types of orchiopexy is a loss of the blood supply to the testis, resulting in loss of the testis due to ischemic atrophy or fibrosis.
Wide, radical, complete surgical excision is the treatment of choice, with free surgical margins to achieve the best outcome and lowest chance of recurrence. Radiation is only used for palliation. In general, there is a good prognosis, although approximately 50% of patients die from disease within 3–10 years of presentation.
Usually the lesion is surgically removed. Primarily, there is concern that the lesion identified in a patient could be cancerous, but there is also the risk of torsion, and possibly the development of symptoms. A stable lesion, however, could be clinically followed.
Most fibroadenomas are simply monitored. Some are treated by surgical excision. They are removed with a small margin of normal breast tissue if the preoperative clinical investigations are suggestive of the necessity of this procedure. A small amount of normal tissue must be removed in case the lesion turns out to be a phyllodes tumour on microscopic examination.
Because needle biopsy is often a reliable diagnostic investigation, some doctors may decide not to operate to remove the lesion, and instead opt for clinical follow-up to observe the lesion over time using clinical examination and mammography to determine the rate of growth, if any, of the lesion. A growth rate of less than sixteen percent per month in women under fifty years of age, and a growth rate of less than thirteen percent per month in women over fifty years of age have been published as safe growth rates for continued non-operative treatment and clinical observation.
Some fibroadenomas respond to treatment with ormeloxifene.
Fibroadenomas have not been shown to recur following complete excision or transform into phyllodes tumours following partial or incomplete excision.
Since gestational choriocarcinoma (which arises from a hydatidiform mole) contains paternal DNA (and thus paternal antigens), it is exquisitely sensitive to chemotherapy. The cure rate, even for metastatic gestational choriocarcinoma, is around 90–95%.
At present, treatment with single-agent methotrexate is recommended for low-risk disease, while intense combination regimens including EMACO (etoposide, methotrexate, actinomycin D, cyclosphosphamide and vincristine (Oncovin) are recommended for intermediate or high-risk disease.
Hysterectomy (surgical removal of the uterus) can also be offered to patients > 40 years of age or those for whom sterilisation is not an obstacle. It may be required for those with severe infection and uncontrolled bleeding.
Choriocarcinoma arising in the testicle is rare, malignant and highly resistant to chemotherapy. The same is true of choriocarcinoma arising in the ovary. Testicular choriocarcinoma has the worst prognosis of all germ-cell cancers.
Benign fibromas may, but need not be, removed. Removal is usually a brief outpatient procedure.
For more general information, see ovarian cancer.
For advanced cancer of this histology, the US National Cancer Institute recommends a method of chemotherapy that combines intravenous (IV) and intraperitoneal (IP) administration. Preferred chemotherapeutic agents include a platinum drug with a taxane.
With prompt diagnosis and treatment the testicle can often be saved. Typically, when a torsion takes place, the surface of the testicle has rotated towards the midline of the body. Non-surgical correction can sometimes be accomplished by manually rotating the testicle in the opposite direction (i.e., outward, towards the thigh); if this is initially unsuccessful, a forced manual rotation in the other direction may correct the problem. The success rate of manual detorsion is not known with confidence.
Testicular torsion is a surgical emergency that requires immediate intervention to restore the flow of blood. If treated either manually or surgically within six hours, there is a high chance (approx. 90%) of saving the testicle. At 12 hours the rate decreases to 50%; at 24 hours it drops to 10%, and after 24 hours the ability to save the testicle approaches 0. About 40% of cases result in loss of the testicle. Common treatment for children is surgically sewing the testicle to the scrotum to prevent future recurrence (orchiopexy).