Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
Neonatal infection treatment is typically started before the diagnosis of the cause can be confirmed.
Neonatal infection can be prophylactically treated with antibiotics. Maternal treatment with antibiotics is primarily used to protect against group B streptococcus.
Women with a history of HSV, can be treated with antiviral drugs to prevent symptomatic lesions and viral shedding that could infect the infant at birth. The antiviral medications used include acyclovir, penciclovir, valacyclovir, and famciclovir. Only very small amounts of the drug can be detected in the fetus. There are no increases in drug-related abnormalities in the infant that could be attributed to acyclovir. Long-term effects of antiviral medications have not been evaluated for their effects after growth and development of the child occurs. Neutropenia can be a complication of acyclovir treatment of neonatal HSV infection, but is usually transient. Treatment with immunoglobulin therapy has not been proven to be effective.
Treatment consists of antibiotic therapy aimed at the typical bacterial pathogens in addition to supportive care for any complications which might result from the infection itself such as hypotension or respiratory failure. A typical regimen will include intravenous antibiotics such as from the penicillin-group which is active against "Staphylococcus aureus" and an aminoglycoside for activity against Gram-negative bacteria. For particularly invasive infections, antibiotics to cover anaerobic bacteria may be added (such as metronidazole). Treatment is typically for two weeks and often necessitates insertion of a central venous catheter or peripherally inserted central catheter.
People with AIDS are given macrolide antibiotics such as azithromycin for prophylactic treatment.
People with HIV infection and less than 50 CD4+ T-lymphocytes/uL should be administered prophylaxis against MAC. Prophylaxis should be continued for the patient's lifetime unless multiple drug therapy for MAC becomes necessary because of the development of MAC disease.
Clinicians must weigh the potential benefits of MAC prophylaxis against the potential for toxicities and drug interactions, the cost, the potential to produce resistance in a community with a high rate of tuberculosis, and the possibility that the addition of another drug to the medical regimen may adversely affect patients' compliance with treatment. Because of these concerns, therefore, in some situations rifabutin prophylaxis should not be administered.
Before prophylaxis is administered, patients should be assessed to ensure that they do not have active disease due to MAC, M. tuberculosis, or any other mycobacterial species. This assessment may include a chest radiograph and tuberculin skin test.
Rifabutin, by mouth daily, is recommended for the people's lifetime unless disseminated MAC develops, which would then require multiple drug therapy. Although other drugs, such as azithromycin and clarithromycin, have laboratory and clinical activity against MAC, none has been shown in a prospective, controlled trial to be effective and safe for prophylaxis. Thus, in the absence of data, no other regimen can be recommended at this time.The 300-mg dose of rifabutin has been well tolerated. Adverse effects included neutropenia, thrombocytopenia, rash, and gastrointestinal disturbances.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
Postinfection treatment involves a combination of antituberculosis antibiotics, including rifampicin, rifabutin, ciprofloxacin, amikacin, ethambutol, streptomycin, clarithromycin or azithromycin.
NTM infections are usually treated with a three-drug regimen of either clarithromycin or azithromycin, plus rifampicin and ethambutol. Treatment typically lasts at least 12 months.
Although studies have not yet identified an optimal regimen or confirmed that any therapeutic regimen produces sustained clinical benefit for patients with disseminated MAC, the Task Force concluded that the available information indicated the need for treatment of disseminated MAC. The Public Health Service therefore recommends that regimens be based on the following principles:
- Treatment regimens outside a clinical trial should include at least two agents.
- Every regimen should contain either azithromycin or clarithromycin; many experts prefer ethambutol as a second drug. Many clinicians have added one or more of the following as second, third, or fourth agents: clofazimine, rifabutin, rifampin, ciprofloxacin, and in some situations amikacin. Isoniazid and pyrazinamide are not effective for the therapy of MAC.
- Therapy should continue for the lifetime of the patient if clinical and microbiologic improvement is observed.
Clinical manifestations of disseminated MAC—such as fever, weight loss, and night sweats—should be monitored several times during the initial weeks of therapy. Microbiologic response, as assessed by blood culture every 4 weeks during initial therapy, can also be helpful in interpreting the efficacy of a therapeutic regimen.Most patients who ultimately respond show substantial clinical improvement in the first 4–6 weeks of therapy. Elimination of the organisms from blood cultures may take somewhat longer, often requiring 4–12 weeks.
Among the categories of bacteria most known to infect patients are the category MRSA (resistant strain of "S. aureus"), member of gram-positive bacteria and "Acinetobacter" ("A. baumannii"), which is gram-negative. While antibiotic drugs to treat diseases caused by gram-positive MRSA are available, few effective drugs are available for "Acinetobacter". "Acinetobacter" bacteria are evolving and becoming immune to existing antibiotics, so in many cases, polymyxin-type antibacterials need to be used. "In many respects it’s far worse than MRSA," said a specialist at Case Western Reserve University.
Another growing disease, especially prevalent in New York City hospitals, is the drug-resistant, gram-negative "Klebsiella pneumoniae". An estimated more than 20% of the "Klebsiella" infections in Brooklyn hospitals "are now resistant to virtually all modern antibiotics, and those supergerms are now spreading worldwide."
The bacteria, classified as gram-negative because of their reaction to the Gram stain test, can cause severe pneumonia and infections of the urinary tract, bloodstream, and other parts of the body. Their cell structures make them more difficult to attack with antibiotics than gram-positive organisms like MRSA. In some cases, antibiotic resistance is spreading to gram-negative bacteria that can infect people outside the hospital. "For gram-positives we need better drugs; for gram-negatives we need any drugs," said Dr. Brad Spellberg, an infectious-disease specialist at Harbor-UCLA Medical Center, and the author of "Rising Plague", a book about drug-resistant pathogens.
One-third of nosocomial infections are considered preventable. The CDC estimates 2 million people in the United States are infected annually by hospital-acquired infections, resulting in 20,000 deaths. The most common nosocomial infections are of the urinary tract, surgical site and various pneumonias.
Concomitant pinworm infection should also be excluded, although the association has not been proven. Successful treatment of the infection with iodoquinol, doxycycline, metronidazole, paromomycin, and secnidazole has been reported. Resistance requires the use of combination therapy to eradicate the organism. All persons living in the same residence should be screened for "D. fragilis", as asymptomatic carriers may provide a source of repeated infection. Paromomycin is an effective prophylactic for travellers who will encounter poor sanitation and unsafe drinking water.
The medications prescribed for acute toxoplasmosis are the following:
- Pyrimethamine — an antimalarial medication
- Sulfadiazine — an antibiotic used in combination with pyrimethamine to treat toxoplasmosis
- Combination therapy is usually given with folic acid supplements to reduce incidence of thrombocytopaenia.
- Combination therapy is most useful in the setting of HIV.
- Clindamycin
- Spiramycin — an antibiotic used most often for pregnant women to prevent the infection of their children.
(other antibiotics, such as minocycline, have seen some use as a salvage therapy).
If infected during pregnancy, spiramycin is recommended in the first and early second trimesters while pyrimethamine/sulfadiazine and leucovorin is recommended in the late second and third trimesters.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
It is currently recommended that HIV-infected individuals with TB receive combined treatment for both diseases, irrespective of CD4+ cell count. ART (Anti Retroviral Therapy) along with ATT (Anti Tuberculosis Treatment) is the only available treatment in present time. Though the timing of starting ART is the debatable question due to the risk of immune reconstitution inflammatory syndrome (IRIS). The advantages of early ART include reduction in early mortality, reduction in relapses, preventing drug resistance to ATT and reduction in occurrence of HIV-associated infections other than TB. The disadvantages include cumulative toxicity of ART and ATT, drug interactions leading to inflammatory reactions are the limiting factors for choosing the combination of ATT and ART.
A systematic review investigated the optimal timing of starting antiretroviral therapy in adults with newly diagnosed pulmonary tuberculosis. The review authors included eight trials, that were generally well-conducted, with over 4500 patients in total. The early provision of antiretroviral therapy in HIV-infected adults with newly diagnosed tuberculosis improved survival in patients who had a low CD4 count (less than 0.050 x 109 cells/L). However, such therapy doubled the risk for IRIS. Regarding patients with higher CD4 counts (more than 0.050 x 109 cells/L), the evidence is not sufficient to make a conclusion about benefits or risks of early antiretroviral therapy.
In people with latent toxoplasmosis, the cysts are immune to these treatments, as the antibiotics do not reach the bradyzoites in sufficient concentration.
The medications prescribed for latent toxoplasmosis are:
- Atovaquone — an antibiotic that has been used to kill "Toxoplasma" cysts inside AIDS patients
- Clindamycin — an antibiotic that, in combination with atovaquone, seemed to optimally kill cysts in mice
During the 1950s there were outbreaks of omphalitis that then led to anti-bacterial treatment of the umbilical cord stump as the new standard of care. It was later determined that in developed countries keeping the cord dry is sufficient, (known as "dry cord care") as recommended by the American Academy of Pediatrics. The umbilical cord dries more quickly and separates more readily when exposed to air However, each hospital/birthing center has its own recommendations for care of the umbilical cord after delivery. Some recommend not using any medicinal washes on the cord. Other popular recommendations include triple dye, betadine, bacitracin, or silver sulfadiazine. With regards to the medicinal treatments, there is little data to support any one treatment (or lack thereof) over another. However one recent review of many studies supported the use of chlorhexidine treatment as a way to reduce risk of death by 23% and risk of omphalitis by anywhere between 27-56% in community settings in underdeveloped countries. This study also found that this treatment increased the time that it would take for the umbilical stump to separate or fall off by 1.7 days. Lastly this large review also supported the notion that in hospital settings no medicinal type of cord care treatment was better at reducing infections compared to dry cord care.
The methods used differ from country to country (definitions used, type of nosocomial infections covered, health units surveyed, inclusion or exclusion of imported infections, etc.), so the international comparisons of nosocomial infection rates should be made with the utmost care.
Treatment of AIT involves antibiotic treatment. Based on the offending organism found on microscopic examination of the stained fine needle aspirate, the appropriate antibiotic treatment is determined. In the case of a severe infection, systemic antibiotics are necessary. Empirical broad spectrum antimicrobial treatment provides preliminary coverage for a variety of bacteria, including "S. aureus" and "S. pyogenes." Antimicrobial options include penicillinase-resistant penicillins (ex: cloxacillin, dicloxacillin) or a combination of a penicillin and a beta-lactamase inhibitor. However, in patients with a penicillin allergy, clindamycin or a macrolide can be prescribed. The majority of anaerobic organisms involved with AIT are susceptible to penicillin. Certain Gram-negative bacilli (ex: "Prevotella", "Fusobacteria", and "Porphyromonas") are exhibiting an increased resistance based on the production of beta-lactamase. Patients who have undergone recent penicillin therapy have demonstrated an increase in beta-lactamase-producing (anaerobic and aerobic) bacteria. Clindamycin, or a combination of metronidazole and a macrolide, or a penicillin combined with a beta-lactamase inhibitor is recommended in these cases. Fungal thyroiditis can be treated with amphotericin B and fluconazole. Early treatment of AIT prevents further complications. However, if antibiotic treatment does not manage the infection, surgical drainage is required. Symptoms or indications requiring drainage include continued fever, high white blood cell count, and continuing signs of localized inflammation. The draining procedure is also based on clinical examination or ultrasound/CT scan results that indicate an abscess or gas formation. Another treatment of AIT involves surgically removing the fistula. This treatment is often the option recommended for children. However, in cases of an antibiotic resistant infection or necrotic tissue, a lobectomy is recommended. If diagnosis and/or treatment is delayed, the disease could prove fatal.
When HIV-negative children take isoniazid after they have been exposed to tuberculosis, their risk to contract tuberculosis is reduced. A Cochrane review investigated whether giving isoniazid to HIV-positive children can help to prevent this vulnerable group from getting tuberculosis. They included three trials conducted in South Africa and Botswana and found that isoniazid given to all children diagnosed with HIV may reduce the risk of active tuberculosis and death in children who are not on antiretroviral treatment. For children taking antiretroviral medication, no clear benefit was detected.
Most infections are mild and require no therapy or only symptomatic treatment. Because there is no virus-specific therapy, serious adenovirus illness can be managed only by treating symptoms and complications of the infection. Deaths are exceedingly rare but have been reported.
Bumblefoot is so named because of the characteristic "bumbles" or lesions, as well as swelling of the foot pad, symptomatic of an infection. Topical antiseptics in addition to oral or injected antibiotics may be used to combat the infection, which if left untreated may be fatal.
To reduce neonatal infection, routine screening of pregnant women for HIV, hepatitis B, syphilis, and rubella susceptibility is required in the UK.
Treatment with an vaginal antibiotic wash prior to birth does not prevent infection with group B streptococcus bacteria. Breast milk protects against necrotizing enterocolitis.
Because GBS bacteria can colonize the lower reproductive tract of 30% of women, typically pregnant women are tested for this pathogen from 35 to 37 weeks of pregnancy. Before delivery treatment of the mother with antibiotics reduces the rate of neonatal infection. Prevention of the infection of the baby is done by treating the mother with penicillin. Since the adoption of this prophylatic treatment, infant mortality from GBS infection has decreased by 80%.
Mothers with symptomatic HSV and who are treated with antiviral prophylaxis are less prone to have an active, symptomatic case at the time of birth and it may be able to reduce the risk of passing on HSV during birth. Cesarean delivery reduces the risk of infection of the infant.
Physicians often prescribe the antibiotic trimethoprim-sulfamethoxazole to prevent bacterial infections. This drug also has the benefit of sparing the normal bacteria of the digestive tract. Fungal infection is commonly prevented with itraconazole, although a newer drug of the same type called voriconazole may be more effective. The use of this drug for this purpose is still under scientific investigation.
Systemic candidiasis occurs when Candida yeast enters the bloodstream and may spread (becoming disseminated candidiasis) to other organs, including the central nervous system, kidneys, liver, bones, muscles, joints, spleen, or eyes. Treatment typically consists of oral or intravenous antifungal medications. In candidal infections of the blood, intravenous fluconazole or an echinocandin such as caspofungin may be used. Amphotericin B is another option.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.