Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment includes anti-inflammatory medications and immobilization of the neck in addition to treatment of the offending infectious cause (if any) with appropriate antibiotics. Early treatment is crucial to prevent long-term sequelae. Surgical fusion may be required for residual instability of the joint.
There have been attempts to control the inflammation using drugs that work in other conditions where inflammation is a problem. The most successful of these are steroids, but they have side effects when used long term. Other medications, including methotrexate, colchicine and canakinumab, have been tried with some success. Otherwise, the treatment is supportive, or aimed solely at controlling symptoms and maximizing function.
Management depends on the symptoms displayed, for example, if the individual indicates muscular-skeletal pain then paracetamol may be administered. If the individual presents with ocular problems, then prednisone and cyclopentolate may be used for treatment, according to the WHO.
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
A complete recovery following immunotherapy and tumor removal. Untreated cases died within few months of onset. Some patients have a poor outcome despite sustained immunosuppression, but that is often related to tumor progression or associated with the presence of Abs directed against intracellular Ags such as GAD Abs or amphyphysin Abs, which can reflect the involvement of an additional cytotoxic T-cell mechanism in the progression of the disease.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
A sequela (, ; usually used in the plural, sequelae) is a pathological condition resulting from a disease, injury, therapy, or other trauma. Typically, a sequela is a chronic condition that is a complication which follows a more acute condition. It is different from, but is a consequence of, the first condition. Timewise, a sequela contrasts with a late effect, where there is a period, sometimes as long as several decades, between the resolution of the initial condition and the appearance of the late effect.
In general, non-medical usage, the terms "sequela" and "sequelae" mean consequence and consequences.
Chronic kidney disease, for example, is sometimes a sequela of diabetes, "chronic constipation" or more accurately "obstipation" (that is, difficulty in passing stool) is a sequela to an intestinal obstruction, and neck pain is a common sequela of whiplash or other trauma to the cervical vertebrae. Post-traumatic stress disorder may be a psychological sequela of rape. Sequelae of traumatic brain injury include headache and dizziness, anxiety, apathy, depression, aggression, cognitive impairments, personality changes, mania, psychosis.
Some conditions may be diagnosed retrospectively from their sequelae. An example is pleurisy.
Other examples of sequelae include those following neurological injury; including aphasia, ataxia, hemi- and quadriplegia, and any number of other changes that may be caused by neurological trauma. Note that these pathologies can be related to both physical and chemical traumas, as both can cause lingering neuron damage.
The phrase "status post", abbreviated in writing as "s/p", is used to discuss sequelae with reference to their cause. Clinicians typically use the phrase to refer to acute traumatic conditions. For example: "the patient had neck pain "status post" a motor vehicle accident".
Rheumatic fever is a nonsuppurative sequela of a primary infection of group A "Streptococcus" bacteria. Glomerulonephritis can also be a sequela of "Streptococcus pyogenes".
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
Currently no effective treatment exists for kernicterus. Future therapies may include neuroregeneration. A handful of patients have undergone deep brain stimulation, and experienced some benefit. Drugs such as baclofen, clonazepam, and artane are often used to manage movement disorders associated with kernicterus. Proton pump inhibitors are also used to help with reflux. Cochlear implants and hearing aids have also been known to improve the hearing loss that can come with kernicterus (auditory neuropathy - ANSD).
Warm baths may be tried in those with mild disease. Weight loss and stopping smoking is also recommended.
Cytomegalic inclusion body disease (CIBD) is a series of signs and symptoms caused by cytomegalovirus infection, toxoplasmosis or other rare infections such as herpes or rubella viruses. It can produce massive calcification of the central nervous system, and often the kidneys.
Cytomegalic inclusion body disease is the most common cause of congenital abnormalities in the United States. It can also cause pneumonia and other diseases in immunocompromised patients, such as those with HIV/AIDS or recipients of organ transplants.
Researchers from the National Institute of Neurological Disorders and Stroke (NINDS) and Liberian research partners are doing a 5 year follow-up study of 1500 Ebola survivors in Liberia. Survivors will be evaluated every 6 months; as of October 2017 two follow-ups have been performed. Researchers will track relapses and viral persistence, characterize sequelae in various bodily systems, and do clinical studies on pharmacologic interventions and vaccines.
NINDS, located in Bethesda, Maryland, partnered with Liberia to form the research group PREVAIL III (Partnership for Research on Ebola Vaccines in Liberia III) in 2014. In 2016 they wrote:
"Moving forward, there is an urgent need to evaluate and address Liberia's capacity to appropriately benefit from the upsurge in research opportunities during the post-EVD period. Funding should be dedicated to developing a critical mass of skilled researchers who can lead clinical research programmes that are locally relevant, ethical, and methodologically sound."
Recently scientists have proven that intralesional injection of autologous bone marrow stem cells is a safe and effective treatment modality in oral sub mucosal fibrosis. It has been shown autologous bone marrow stem cell injections induces angiogenesis in the area of lesion which in turn decreases the extent of fibrosis thereby leading to significant increase in mouth opening.
Biopsy screening although necessary is not mandatory most dentist can visually examine the area and proceed with the proper course of treatment.
Treatment includes:
- Abstention from chewing areca nut (also known as betel nut) and tobacco
- Minimizing consumption of spicy foods, including chiles
- Maintaining proper oral hygiene
- Supplementing the diet with foods rich in vitamins A, B complex, and C and iron
- Forgoing hot fluids like tea, coffee
- Forgoing alcohol
- Employing a dental surgeon to round off sharp teeth and extract third molars
Treatment also includes following:
- The prescription of chewable pellets of hydrocortisone (Efcorlin); one pellet to be chewed every three to four hours for three to four weeks
- 0.5 ml intralesional injection Hyaluronidase 1500 IU mixed in 1 ml of Lignocaine into each buccal mucosa once a week for 4 weeks or more as per condition
- 0.5 ml intralesional injection of Hyaluronidase 1500 IU and 0.5 ml of injection Hydrocortisone acetate 25 mg/ml in each buccal mucosa once a week alternatively for 4 weeks or more as per condition
- Submucosal injections of hydrocortisone 100 mg once or twice daily depending upon the severity of the disease for two to three weeks
- Submucosal injections of human chorionic gonadotrophins (Placentrax) 2-3 ml per sitting twice or thrice in a week for three to four weeks
- Surgical treatment is recommended in cases of progressive fibrosis when interincisor distance becomes less than . (Multiple release incisions deep to mucosa, submucosa and fibrotic tissue and suturing the gap or dehiscence so created by mucosal graft obtained from tongue and Z-plasty. In this procedure multiple deep z-shaped incisions are made into fibrotic tissue and then sutured in a straighter fashion.)
- Pentoxifylline (Trental), a methylxanthine derivative that has vasodilating properties and increases mucosal vascularity, is also recommended as an adjunct therapy in the routine management of oral submucous fibrosis.
- IFN-gamma is antifibrotic cytokine which alters collagen synthesis and helps in OSF.
- Colchicine tablets 0.5 mg twice a day
- Lycopene, 16 mg a day helps in improvement of OSF
The treatment of patients with oral submucous fibrosis depends on the degree of clinical involvement. If the disease is detected at a very early stage, cessation of the habit is sufficient. Most patients with oral submucous fibrosis present with moderate-to-severe disease. Severe oral submucous fibrosis is irreversible. Moderate oral submucous fibrosis is reversible with cessation of habit and mouth opening exercise. Current modern day medical treatments can make the mouth opening to normal minimum levels of 30 mm mouth opening with proper treatment.
Treatment depends upon presentation and severity of the disease. Due to the poorly studied nature of the disease, the effectiveness of the drugs and therapies listed below is unclear. Possible treatments include the following:
Most healthy people clear the infection without treatment, but in 5 to 14 percent of individuals, the organisms disseminate and infect the liver, spleen, eye, or central nervous system. Although some experts recommend not treating typical CSD in immunocompetent patients with mild to moderate illness, treatment of all patients with antimicrobial agents (Grade 2B) is suggested due to the probability of disseminated disease. The preferred antibiotic for treatment is azithromycin since this agent is the only one studied in a randomized controlled study.
Azithromycin is preferentially used in pregnancy to avoid the teratogenic side effects of doxycycline. However, doxycycline is preferred to treat "B. henselae" infections with optic neuritis due to its ability to adequately penetrate the tissues of the eye and central nervous system.
The only effective way at preventing kernicterus is to lower the serum bilirubin levels either by phototherapy or exchange transfusion. Visual inspection is never sufficient; therefore, it is best to use a bilimeter or blood test to determine a baby's risk for developing kernicterus. These numbers can then be plotted on the Bhutani nomogram.
Various systems are affected.
- CNS abnormalities – microcephaly, mental retardation, spasticity, epilepsy, periventricular calcification
- Eye – choroidoretinitis and optic atrophy
- Ear – sensorineural deafness
- Liver – hepatosplenomegaly and jaundice due to hepatitis
- Lung – pneumonitis (interstitial pneumonitis)
- Heart – myocarditis
- Thrombocytopenic purpura, haemolytic anaemia
- Late sequelae in individuals asymptomatic at birth – hearing defects and reduced intelligence
Treatment consists mainly of replacing fluids and salts lost because of diarrhea. Replacement by mouth is satisfactory for most people, but some may need to receive fluids intravenously. Antidiarrheal drugs (such as diphenoxylate or loperamide) may prolong the infection and should not be used.
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
In order to avoid problems, the person must be rehabilitated with small but frequent rations, given every two to four hours. During one week, the diet, hyperglucidic, is gradually enriched in protein as well as essential elements: sweet milk with mineral salts and vitamins. The diet may include lactases - so that children who have developed lactose intolerance can ingest dairy products - and antibiotics - to compensate for immunodeficiency. After two to three weeks, the milk is replaced by boiled cereals fortified with minerals and vitamins until its mass is at least 80% of normal weight. Traditional food can then be reintroduced. The child is considered healed when his mass reaches 85% of normal.