Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If the person has been sufficiently fluid resuscitated but the mean arterial pressure is not greater than 65 mmHg, vasopressors are recommended. Norepinephrine (noradrenaline) is recommended as the initial choice. If a single vasopressor is not enough to raise the blood pressure, epinephrine (adrenaline) or vasopressin may be added. Dopamine is typically not recommended. Dobutamine may be used if heart function is poor or blood flow is insufficient despite sufficient fluid volumes and blood pressure.
Two sets of blood cultures (aerobic and anaerobic) should be taken without delaying the initiation of antibitoics. Cultures from other sites such as respiratory secretions, urine, wounds, cerebrospinal fluid, and catheter insertion sites (in-situ more than 48 hours) can be taken if infections from these sites are suspected. In severe sepsis and septic shock, broad-spectrum antibiotics (usually two, a β-lactam antibiotic with broad coverage, or broad-spectrum carbapenem combined with fluoroquinolones, macrolides, or aminoglycosides) are recommended. However, combination of antibiotics is not recommended for the treatment of sepsis but without shock and immuno-compromised persons unless the combination is used to broaden the anti-bacterial activity. The choice of antibiotics is important in determining the survival of the person. Some recommend they be given within one hour of making the diagnosis, stating that for every hour of delay in the administration of antibiotics, there is an associated 6% rise in mortality. Others did not find a benefit with early administration.
Several factors determine the most appropriate choice for the initial antibiotic regimen. These factors include local patterns of bacterial sensitivity to antibiotics, whether the infection is thought to be a hospital or community-acquired infection, and which organ systems are thought to be infected. Antibiotic regimens should be reassessed daily and narrowed if appropriate. Treatment duration is typically 7–10 days with the type of antibiotic used directed by the results of cultures. In case the culture result is negative, antibiotics should be de-escalated according to person's clinical response or stopped altogether if infection is not present to decrease the chances that the person is infected with multiple drug resistance organisms. In case of people having high risk of being infected with multiple drug resistance organisms such as "Pseudomonas aeruginosa", "Acinetobacter baumannii", addition of antibiotic specific to gram-negative organism is recommended. For Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin and teicoplanin is recommanded. For Legionella infection, addition of macrolide or fluoroquinolone is chosen. If fungal infection is suspected, echinocandin (caspofungin and micafungin) is chosen for people with severe sepsis, followed by triazole (fluconazole and itraconazole) for less ill people. Prolonged antibiotic prophylaxis is not recommended in people who has SIRS without any infectious origion such as acute pancreatitis and burns unless sepsis is suspected.
Once daily dosing of aminoglycoside is sufficient to achieve peak plasma concentration for clinical response without kidney toxicity. Meanwhile, for antibiotics with low volume distribution (vancomycin, teicoplanin, colistin), loading dose is required to achieve adequate therapeutic level to fight infections. Frequent infusions of beta-lactam antibiotics without exceeding total daily dose would help to keep the antibiotics level above minimum inhibitory concentration (MIC), thus providing better clinical response. Giving beta-lactam antibiotics continuously may be better than giving them intermittently. Access to therapeutic drug monitoring is important to ensure adequate drug therapeutic level while at the same time preventing the drug from reaching toxic level.
Usually initial therapy is empirical. If sufficient reason to suspect influenza, one might consider oseltamivir. In case of legionellosis, erythromycin or fluoroquinolone.
A third generation cephalosporin (ceftazidime) + carbapenems (imipenem) + beta lactam & beta lactamase inhibitors (piperacillin/tazobactam)
Patients with HCAP are more likely than those with community-acquired pneumonia to receive inappropriate antibiotics that do not target the bacteria causing their disease.
In 2002, an expert panel made recommendations about the evaluation and treatment of probable nursing home-acquired pneumonia. They defined probably pneumonia, emphasized expedite antibiotic treatment (which is known to improve survival) and drafted criteria for the hospitalization of willing patients.
For initial treatment in the nursing home, a fluoroquinolone antibiotic suitable for respiratory infections (moxifloxacin, for example), or amoxicillin with clavulanic acid plus a macrolide has been suggested. In a hospital setting, injected (parenteral) fluoroquinolones or a second- or third-generation cephalosporin plus a macrolide could be used. Other factors that need to be taken into account are recent antibiotic therapy (because of possible resistance caused by recent exposure), known carrier state or risk factors for resistant organisms (for example, known carrier of MRSA or presence of bronchiectasis predisposing to Pseudomonas aeruginosa), or suspicion of possible Legionella pneumophila infection (legionnaires disease).
In 2005, the American Thoracic Society and Infectious Diseases Society of America have published guidelines suggesting antibiotics specifically for HCAP. The guidelines recommend combination therapy with an agent from each of the following groups to cover for both "Pseudomonas aeruginosa" and MRSA. This is based on studies using sputum samples and intensive care patients, in whom these bacteria were commonly found.
- cefepime, ceftazidime, imipenem, meropenem or piperacillin–tazobactam; plus
- ciprofloxacin, levofloxacin, amikacin, gentamicin, or tobramycin; plus
- linezolid or vancomycin
In one observational study, empirical antibiotic treatment that was not according to international treatment guidelines was an independent predictor of worse outcome among HCAP patients.
Guidelines from Canada suggest that HCAP can be treated like community-acquired pneumonia with antibiotics targeting Streptococcus pneumoniae, based on studies using blood cultures in different settings which have not found high rates of MRSA or Pseudomonas.
Besides prompt antibiotic treatment, supportive measure for organ failure (such as cardiac decompensation) are also important. Another consideration goes to hospital referral; although more severe pneumonia requires admission to an acute care facility, this also predisposes to hazards of hospitalization such as delirium, urinary incontinence, depression, falls, restraint use, functional decline, adverse drug effects and hospital infections. Therefore, mild pneumonia might be better dealt with inside the long term care facility. In patients with a limited life expectancy (for example, those with advanced dementia), end-of-life pneumonia also requires recognition and appropriate, palliative care.
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
Among the categories of bacteria most known to infect patients are the category MRSA (resistant strain of "S. aureus"), member of gram-positive bacteria and "Acinetobacter" ("A. baumannii"), which is gram-negative. While antibiotic drugs to treat diseases caused by gram-positive MRSA are available, few effective drugs are available for "Acinetobacter". "Acinetobacter" bacteria are evolving and becoming immune to existing antibiotics, so in many cases, polymyxin-type antibacterials need to be used. "In many respects it’s far worse than MRSA," said a specialist at Case Western Reserve University.
Another growing disease, especially prevalent in New York City hospitals, is the drug-resistant, gram-negative "Klebsiella pneumoniae". An estimated more than 20% of the "Klebsiella" infections in Brooklyn hospitals "are now resistant to virtually all modern antibiotics, and those supergerms are now spreading worldwide."
The bacteria, classified as gram-negative because of their reaction to the Gram stain test, can cause severe pneumonia and infections of the urinary tract, bloodstream, and other parts of the body. Their cell structures make them more difficult to attack with antibiotics than gram-positive organisms like MRSA. In some cases, antibiotic resistance is spreading to gram-negative bacteria that can infect people outside the hospital. "For gram-positives we need better drugs; for gram-negatives we need any drugs," said Dr. Brad Spellberg, an infectious-disease specialist at Harbor-UCLA Medical Center, and the author of "Rising Plague", a book about drug-resistant pathogens.
One-third of nosocomial infections are considered preventable. The CDC estimates 2 million people in the United States are infected annually by hospital-acquired infections, resulting in 20,000 deaths. The most common nosocomial infections are of the urinary tract, surgical site and various pneumonias.
Treatment for gastroenteritis due to "Y. enterocolitica" is not needed in the majority of cases. Severe infections with systemic involvement (sepsis or bacteremia) often requires aggressive antibiotic therapy; the drugs of choice are doxycycline and an aminoglycoside. Alternatives include cefotaxime, fluoroquinolones, and co-trimoxazole.
The main organism associated with ecthyma gangrenosum is "Pseudomonas aeruginosa". However, multi-bacterial cases are reported as well. Prevention measures include practicing proper hygiene, educating the immunocompromised patients for awareness to avoid possible conditions and seek timely medical treatment.
Antibiotics are the first line of treatment in acute prostatitis. Antibiotics usually resolve acute prostatitis infections in a very short time, however a minimum of two to four weeks of therapy is recommended to eradicate the offending organism completely. Appropriate antibiotics should be used, based on the microbe causing the infection. Some antibiotics have very poor penetration of the prostatic capsule, others, such as ciprofloxacin, trimethoprim/sulfamethoxazole, and tetracyclines such as doxycycline penetrate prostatic tissue well. In acute prostatitis, penetration of the prostate is not as important as for category II because the intense inflammation disrupts the prostate-blood barrier. It is more important to choose a bactericidal antibiotic (kills bacteria, e.g., a fluoroquinolone antibiotic) rather than a bacteriostatic antibiotic (slows bacterial growth, e.g. tetracycline) for acute potentially life-threatening infections.
Severely ill patients may need hospitalization, while nontoxic patients can be treated at home with bed rest, analgesics, stool softeners, and hydration. Men with acute prostatitis complicated by urinary retention are best managed with a suprapubic catheter or intermittent catheterization. Lack of clinical response to antibiotics should raise the suspicion of an abscess and prompt an imaging study such as a transrectal ultrasound (TRUS).
The methods used differ from country to country (definitions used, type of nosocomial infections covered, health units surveyed, inclusion or exclusion of imported infections, etc.), so the international comparisons of nosocomial infection rates should be made with the utmost care.
Vasopressors may be used if blood pressure does not improve with fluids. There is no evidence of substantial superiority of one vasopressor over another; however, using dopamine leads to an increased risk of arrythmia when compared with norepinephrine. Vasopressors have not been found to improve outcomes when used for hemorrhagic shock from trauma but may be of use in neurogenic shock. Activated protein C (Xigris) while once aggressively promoted for the management of septic shock has been found not to improve survival and is associated with a number of complications. Xigris was withdrawn from the market in 2011, and clinical trials were discontinued. The use of sodium bicarbonate is controversial as it has not been shown to improve outcomes. If used at all it should only be considered if the pH is less than 7.0.
Aggressive intravenous fluids are recommended in most types of shock (e.g. 1–2 liter normal saline bolus over 10 minutes or 20 ml/kg in a child) which is usually instituted as the person is being further evaluated. Which intravenous fluid is superior, colloids or crystalloids, remains undetermined. Thus as crystalloids are less expensive they are recommended. If the person remains in shock after initial resuscitation packed red blood cells should be administered to keep the hemoglobin greater than 100 g/l.
For those with haemorrhagic shock the current evidence supports limiting the use of fluids for penetrating thorax and abdominal injuries allowing mild hypotension to persist (known as permissive hypotension). Targets include a mean arterial pressure of 60 mmHg, a systolic blood pressure of 70–90 mmHg, or until their adequate mentation and peripheral pulses.
The effect of antibiotics in "E. coli" O157:H7 colitis is controversial. Certain antibiotics may stimulate further verotoxin production and thereby increase the risk of HUS. However, there is also tentative evidence that some antibiotics like quinolones may decrease the risk of hemolytic uremic syndrome. In the 1990s a group of pediatricians from the University of Washington used a network of 47 cooperating laboratories in Washington, Oregon, Idaho, and Wyoming to prospectively identify 73 children younger than 10 years of age who had diarrhea caused by "E. coli" O157:H7 The hemolytic–uremic syndrome developed in 5 of the 9 children given antibiotics (56 percent), and in 5 of the 62 children who were not given antibiotics (8 percent, P<0.001).
Treatment of HUS is generally supportive, with dialysis as needed. Platelet transfusion may actually worsen the outcome.
In most children with postdiarrheal HUS, there is a good chance of spontaneous resolution, so observation in a hospital is often all that is necessary, with supportive care such as hemodialysis where indicated. If a diagnosis of STEC-HUS is confirmed, plasmapheresis (plasma exchange) is contraindicated. However, plasmapheresis may be indicated when there is diagnostic uncertainty between HUS and TTP.
There are case reports of experimental treatments with eculizumab, a monoclonal antibody against CD5 that blocks part of the complement system, being used to treat congenital atypical hemolytic uremic syndrome, as well as severe shiga-toxin associated hemolytic uremic syndrome. These have shown promising results. Eculizeumab was approved by the U.S. Food and Drug Administration (FDA) on March 13, 2007 for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, progressive, and sometimes life-threatening disease characterized by excessive hemolysis; and on September 23, 2011 for the treatment of atypical hemolytic uremic syndrome (aHUS) It was approved by the European Medicines Agency for the treatment of PNH on June 20, 2007, and on November 29, 2011 for the treatment of aHUS. However, of note is the exceedingly high cost of treatment, with one year of the drug costing over $500,000.
Scientists are trying to understand how useful it would be to immunize humans or cattles with vaccines.
Antibiotics have been used to prevent and treat these infections however the misuse of antibiotics is a serious problem for global health. It is recommended that guidelines be followed which outline when it is appropriate to give antibiotics and which antibiotics are most effective.
Atelectasis: mild to moderate fever, no changes or mild rales on chest auscultation.
Management: pulmonary exercises, ambulation (deep breathing and walking)
Urinary tract infection : high fever, malaise, costovertebral tenderness, positive urine culture.
Management: antibiotics as per culture sensitivity (cephalosporine).
Endometritis: moderate fever, exquisite uterine tenderness, minimal abdominal findings.
Management: multiple agent IV antibiotics to cover polymicrobial organisms: clindamycin, gentamicin, addition of ampicillin if no response, no cultures are necessary.
Wound infection: persistent spiking fever despite antibiotics, wound erythema or fluctuance, wound drainage.
Management: antibiotics for cellulitis, open and drain wound, saline-soaked packing twice a day, secondary closure.
Septic pelvic thrombophlebitis: persistent wide fever swings despite antibiotics, usually normal abdominal or pelvic exams.
Management: IV heparin for 7–10 days at rates sufficient to prolong the PTT to double the baseline values.
Mastitis: unilateral, localized erythema, edema, tenderness.
Management: antibiotics for cellulitis, open and drain abscess if present.
Physicians often prescribe the antibiotic trimethoprim-sulfamethoxazole to prevent bacterial infections. This drug also has the benefit of sparing the normal bacteria of the digestive tract. Fungal infection is commonly prevented with itraconazole, although a newer drug of the same type called voriconazole may be more effective. The use of this drug for this purpose is still under scientific investigation.
Osteomyelitis often requires prolonged antibiotic therapy for weeks or months. A PICC line or central venous catheter can be placed for long-term intravenous medication administration. It may require surgical debridement in severe cases, or even amputation.
Initial first-line antibiotic choice is determined by the patient's history and regional differences in common infective organisms. A treatment lasting 42 days is practiced in a number of facilities. Local and sustained availability of drugs have proven to be more effective in achieving prophylactic and therapeutic outcomes. Open surgery is needed for chronic osteomyelitis, whereby the involucrum is opened and the sequestrum is removed or sometimes saucerization can be done. Hyperbaric oxygen therapy has been shown to be a useful to the treatment of osteomyelitis.
Prior to the widespread availability and use of antibiotics, blow fly larvae were sometimes deliberately introduced to the wounds to feed on the infected material, effectively scouring them clean. In 1875, American artist Thomas Eakins depicted a surgical procedure for osteomyelitis at Jefferson Medical College, in a famous oil painting titled "The Gross Clinic".
There is tentative evidence that bioactive glass may also be useful in long bone infections. Support from randomized controlled trials, however, is not available as of 2015.
Interferon, in the form of interferon gamma-1b (Actimmune) is approved by the Food and Drug Administration for the prevention of infection in CGD. It has been shown to reduce infections in CGD patients by 70% and to decrease their severity. Although its exact mechanism is still not entirely understood, it has the ability to give CGD patients more immune function and therefore, greater ability to fight off infections. This therapy has been standard treatment for CGD for several years.
Sulfonamides are the traditional remedies to paracoccidiodomycosis. They were introduced by Oliveira Ribeiro and used for more than 50 years with good results. The most-used sulfa drugs in this infection are sulfadimethoxime, sulfadiazine, and co-trimoxazole. This treatment is generally safe, but several adverse effects can appear, the most severe of which are the Stevens-Johnson syndrome and agranulocytosis. Similarly to tuberculosis treatment, it must be continued for up to three years to eradicate the fungus, and relapse and treatment failures are not unusual.
Antifungal drugs such as amphotericin B or itraconazole and ketoconazole are more effective in clearing the infection, but are limited by their cost when compared with sulfonamides.During therapy, fibrosis can appear and surgery may be needed to correct this. Another possible complication is Addisonian crisis. The mortality rate in children is around 7-10%.
Thoroughly cleaning boats, trailers, nets and other equipment when traveling between different lakes and streams also
helps. The only EPA-approved disinfectant proven effective against VHS is Virkon AQUATIC (made by Dupont). Chlorine bleach kills the VHS virus, but in concentrations that are much too caustic for ordinary use. Disinfecting stations can be found at various inland lake boat launches in the Great Lakes region.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Initial treatment can be medical, involving the use of drugs like isoprenaline (Isuprel) and epinephrine (adrenaline). Definitive treatment is surgical, involving the insertion of a pacemaker – most likely one with sequential pacing such as a DDI mode as opposed to the older VVI mechanisms, and the doctor may arrange the patient to undergo electrocardiography to confirm this type of treatment.
A number of other conditions can cause fevers following delivery including: urinary tract infections, breast engorgement, atelectasis and surgical incisions among others.
The drug of choice for the treatment of uncomplicated strongyloidiasis is ivermectin. Ivermectin does not kill the "Strongyloides" larvae, only the adult worms, therefore repeat dosing may be necessary to properly eradicate the infection. There is an auto-infective cycle of roughly two weeks in which Ivermectin should be re-administered however additional dosing may still be necessary as it will not kill "Strongyloides" in the blood or larvae deep within the bowels or diverticula. Other drugs that are effective are albendazole and thiabendazole (25 mg/kg twice daily for 5 days—400 mg maximum (generally)). All patients who are at risk of disseminated strongyloidiasis should be treated. The optimal duration of treatment for patients with disseminated infections is not clear.
Treatment of strongyloidiasis can be difficult and "Strongyloides" has been known to live in individuals for decades; even after treatment. Continued treatment is thus necessary even if symptoms resolve.
Because of the high cost of Stromectol, the veterinary formula Ivomec can be used. Government programs are needed to help citizens finance lifelong medication.
Clothes and sheets must be washed with enzyme washing powder and dried on hot daily.
Distal or sigmoid, fecalomas can often be disimpacted digitally or by a catheter which carries a flow of disimpaction fluid (water or other solvent or lubricant). Surgical intervention in the form of sigmoid colectomy or proctocolectomy and ileostomy may be required only when all conservative measures of evacuation fail.
Serratia infection refers to a disease caused by a species in the genus "Serratia".
The species involved is usually "Serratia marcescens".
It can cause nosocomial infections.