Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Agraphia cannot be directly treated, but individuals can be rehabilitated to regain some of their previous writing abilities.
For the management of phonological agraphia, individuals are trained to memorize key words, such as a familiar name or object, that can then help them form the grapheme for that phoneme. Management of allographic agraphia can be as simple as having alphabet cards so the individual can write legibly by copying the correct letter shapes. There are few rehabilitation methods for apraxic agraphia; if the individual has considerably better hand control and movement with typing than they do with handwriting, then they can use technological devices. Texting and typing do not require the same technical movements that handwriting does; for these technological methods, only spatial location of the fingers to type is required. If copying skills are preserved in an individual with apraxic agraphia, repeated copying may help shift from the highly intentional and monitored hand movements indicative of apraxic agraphia to a more automated control.
Micrographia is a condition that can occur with the development of other disorders, such as Parkinson's disease, and is when handwriting becomes illegible because of small writing. For some individuals, a simple command to write bigger eliminates the issue.
- Anagram and Copy Treatment (ACT) uses the arrangement of component letters of target words and then repeated copying of the target word. This is similar to the CART; the main difference is that the target words for ACT are specific to the individual. Target words that are important in the life of the individual are emphasized because people with deep or global agraphias do not typically have the same memory for the words as other people with agraphia may. Writing can be even more important to these people as it can cue spoken language. ACT helps in this by facilitating the relearning of a set of personally relevant written words for use in communication.
- Copy and Recall Treatment (CART) method helps to reestablish the ability to spell specific words that are learned through repeated copying and recall of target words. CART is more likely to be successful in treating lexical agraphia when a few words are trained to mastery than when a large group of unrelated words is trained. Words chosen can be individualized to the patient, which makes treatment more personalized.
- Graphemic buffer uses the training of specific words to improve spelling. Cueing hierarchies and copy and recall method of specific words are used, to work the words into the short-term memory loop, or graphemic buffer. The segmentation of longer words into shorter syllables helps bring words into short-term memory.
- Problem solving approach is used as a self-correcting method for phonological errors. The individual sounds out the word and attempts to spell it, typically using an electronic dictionary-type device that indicates correct spelling. This method takes advantage of the preserved sound-to-letter correspondences when they are intact. This approach may improve access to spelling memory, strengthen orthographic representations, or both.
There is no method available to completely cure anomic aphasia. However, there are treatments to help improve word-finding skills.
Although a person with anomia may find it difficult to recall many types of words such as common nouns, proper nouns, verbs, etc., many studies have shown that treatment for object words, or nouns, has shown promise in rehabilitation research. The treatment includes visual aids, such as pictures, and the patient is asked to identify the object or activity. However, if that is not possible, then the patient is shown the same picture surrounded by words associated with the object or activity. Throughout the process, positive encouragement is provided. The treatment shows an increase in word-finding during treatment; however, word identifying decreased two weeks after the rehabilitation period. Therefore, it shows that rehabilitation effort needs to be continuous for word-finding abilities to improve from the baseline. The studies show that verbs are harder to recall or repeat, even with rehabilitation.
Other methods in treating anomic aphasia include Circumlocution Induced Naming therapy (CIN), wherein the patient uses circumlocution to assist with his or her naming rather than just being told to name the item pictured after given some sort of cue. Results suggest that the patient does better in properly naming objects when undergoing this therapy because CIN strengthens the weakened link between semantics and phonology for patients with anomia, since they often know what an object is used for but cannot verbally name it.
Anomia is often burdensome on the families and friends of those suffering from it. One way to overcome this burden is computer-based treatment models, effective especially when used with clinical therapy. Leemann et al. provided anomic patients with computerized-assisted therapy (CAT) sessions, along with traditional therapy sessions using treatment lists of words. Some of the patients received a drug known to help relieve symptoms of anomia (levodopa) while others received a placebo. The researchers found that the drug had no significant effects on improvement with the treatment lists, but almost all of the patients improved after the CAT sessions. They concluded that this form of computerized treatment is effective in increasing naming abilities in anomic patients.
Additionally, one study researched the effects of using "excitatory (anodal) transcranial direct current stimulation" over the right temporo-parietal cortex, a brain area that seems to correlate to language. The electrical stimulation seemed to enhance language training outcome in patients with chronic aphasia.
There are clinical trials being done to further research for treatments. At the National Institute of Neurological Disorders and Stroke (NINDS) they support research for rare diseases like agnosia. Some organizations that are recruiting for trials are using clincaltrials.gov and give status updates on the trials.
The only way to treat aphasia is with speech and language therapy (SLT). It will not completely restore the person’s prior level of communication, but SLT can lead to a massive improvement of jargon aphasia. Recipients of this treatment typically achieve better use of residual language abilities, improved language skills, and the ability to communicate in a different way by making up for missing words in their speech[2].
One specific method that has shown to lead to improvements with certain symptoms is “phonological component analysis”, or PCA for short. Participants in PCA therapy tend to improve in the ability to name specific items that they are test on, as well as the decrease in use of nonwords to describe said items. Seeing promising results from this type of therapy has led to much optimism in hopes of developing more treatment methods for jargon aphasia[6].
Though there have been ample attempts to rehabilitate patients with pure alexia, few have proven to be effective on a large scale. Most rehabilitation practices have been specialized to a single patient or small patient group. At the simplest level, patients seeking rehabilitation are asked to practice reading words aloud repeatedly. This is meant to stimulate the damaged system of the brain. This is known as multiple oral re-reading (MOR) treatment. This is a text-based approach that is implemented in order to prevent patients from LBL reading. MOR works by reading aloud the same text repeatedly until certain criteria are reached. The most important criteria for a pure alexic patient is reading at an improved rate. The treatment aims to shift patients away from the LBL reading strategy by strengthening links between visual input and the associated orthographic representations. This repetition supports the idea of using top-down processing initially minimize the effects peripheral processing which were demonstrated in the study above. From here, the goal is to increasing bottom-up processing. This will hopefully aid in word recognition and promote interactive processing of all available information to support reading. 'The supported reading stimulation from MOR has a rehabilitative effect so that reading rate and accuracy are better for untrained text, and word-form recognition improves as evidenced by a reduced word-length effect.' These tactics have seen quite good success.
Another tactic that has been employed is the use of cross modal therapy. In this therapy, patients are asked to trace the words in which they are trying to read aloud. There has been success using cross modal therapy such as kinaesthetic or motor-cross cuing therapy, but tends to be a more feasible approach for those on the slower reading end of the spectrum.
Transient paraphasias (as well as other language defects such as speech arrest) can be generated by artificially activating the brain's language network with Transcranial magnetic stimulation (TMS). With navigated TMS (nTMS), nodes of the language network can be located presurgically so that critical areas can be saved when performing tumor or epilepsy surgery. Marketed by Nexstim, this method has received Food and Drug Administration (FDA) clearance in the United States.
The social approach involves a collaborative effort on behalf of patients and clinicians to determine goals and outcomes for therapy that could improve the patient's quality of life. A conversational approach is thought to provide opportunities for development and the use of strategies to overcome barriers to communication.The main goals of this treatment method are to improve the patient's conversational confidence and skills in natural contexts using conversational coaching, supported conversations, and partner training.
1. Conversational coaching involves patients with aphasia and their speech language pathologists, who serve as a "coach" discussing strategies to approach various communicative scenarios. The "coach" will help the patient develop a script for a scenario (such as ordering food at a restaurant), and help the patient practice and perform the scenario in and out of the clinic while evaluating the outcome.
2. Supported conversation also involves using a communicative partner who supports the patient's learning by providing contextual cues, slowing their own rate of speech, and increasing their message's redundancy to promote the patient's comprehension.
Additionally, it is important to include the families of patients with aphasia in treatment programs. Clinicians can teach family members how to support one another, and how to adjust their speaking patterns to facilitate their loved one's treatment and rehabilitation.
Auditory comprehension is a primary focus in treatment for Wernicke's aphasia, as it is the main deficit related to this diagnosis. Therapy activities may include:
- Single-word comprehension: A common treatment method used to support single-word comprehension skills is known as a pointing drill. Through this method, clinicians lay out a variety of images in front of a patient. The patient is asked to point to the image that corresponds to the word provided by the clinician.
- Understanding Spoken Sentences: "Treatment to improve comprehension of spoken sentences typically consists of drills in which patients answer questions, follow directions or verify the meaning of sentences".
- Understanding Conversation: An effective treatment method to support comprehension of discourse includes providing a patient with a conversational sample and asking him or her questions about that sample. Individuals with less severe deficits in auditory comprehension may also be able to retell aspects of the conversation.
Due to advances in modern neuroimaging, scientists have been able to gain a better understanding of how language is learned and comprehended. Based on the new data from the world of neuroscience, improvements can be made in coping with the disorder.
Therapists have been developing multiple methods of improving speech and comprehension. These techniques utilize three general principles: maximizing therapy occurrences, ensuring behavioral and communicative relevance, and allowing patients to focus on the language tools that are still available in his or her repertoire.
Many of the following treatment techniques are used to improve auditory comprehension in patients with aphasia:
- Use common words
- Using concrete nouns is more effective than using adjectives, adverbs, or verbs
- Using action verbs that are easily imagined
- Concise and grammatically simple sentences as opposed to lengthy sentences
- Speaking slowly, repeating oneself several times when conversing with patients who are aphasic
- Using gestures
A relatively new method of language therapy involves coincidence learning. Coincidence learning focuses on the simultaneous learning of two or more events and stipulates that these events are wired together in the brain, strengthening the learning process. Therapists use coincidence learning to find and improve language correlations or coincidences that have been either damaged or deleted by severe cases of aphasia, such as transcortical sensory aphasia. This technique is important in brain function and recovery, as it strengthens associated brain areas that remain unaffected after brian damage. It can be achieved with intensive therapy hours in order to maximize time where correlation is emphasized.
Through careful analysis of neuroimaging studies, a correlation has been developed with motor function and the understanding of action verbs. For example, leg and motor areas were seen to be activated words such as "kick", leading scientists to understand the connection between motor and language processes in the brain. This is yet another example of using relationships that are related in the brain for the purpose of rehabilitating speech and comprehension.
Of huge importance in aphasia therapy is the need to start practicing as soon as possible. Greater recovery occurs when a patient attempts to improve their comprehension and speaking soon after aphasia occurs. There is an inverse relationship between the length of time spent not practicing and level of recovery. The patient should be pushed to their limits of verbal communication in order for them to practice and build upon their remaining language skills.
One effective therapy technique is using what are known as language games in order to encourage verbal communication. One famous example is known as "Builder's Game", where a 'builder' and a 'helper' must communicate in order to effectively work on a project. The helper must hand the builder the tools he or she may need, which requires effective oral communication. The builder succeeds by requesting tools from the assistant by usually using single word utterances, such as 'hammer' or 'nail'. Thus, when the helper hands the tool to the builder, the game incorporates action with language, a key therapy technique. The assistant would then hand the builder the requested tool. Success of the game occurs when the builder's requests are specific to ensure successful building.
Ultimately, regardless of therapy plan or method, improvement in speech does not appear overnight; it requires a significant time investment by the patient as well as a dedicated speech therapist seeking to ensure that the patient is focusing on the correct speech tasks outside of the clinic. Furthermore, the patient must collaborate with friends and family members during their free time in order to maximize the efficacy of the treatment.
There is no curative treatment for this condition. Supportive management is helpful.
Treating auditory verbal agnosia with intravenous immunoglobulin (IVIG) is controversial because of its inconsistency as a treatment method. Although IVIG is normally used to treat immune diseases, some individuals with auditory verbal agnosia have responded positively to the use of IVIG. Additionally, patients are more likely to relapse when treated with IVIG than other pharmacological treatments. IVIG is, thus, a controversial treatment as its efficacy in treating auditory verbal agnosia is dependent upon each individual and varies from case to case.
These strategies elicit the use of an unaffected modality. For example, visual agnosics can use tactile information in replacement of visual information. Alternatively, an individual with prosopagnosia can use auditory information in order to replace visual information. For example, an individual with prosopagnosia can wait for someone to speak, and will usually recognize the individual from their speech.
Many language impairments, including paraphasic errors, are reduced in number through spontaneous recovery of neurological function; this occurs most often with stroke patients within the first three months of recovery. Lesions associated with ischemic strokes have a shorter spontaneous recovery time, within the first two weeks, and lesions associated with hemorrhagic strokes, on the other hand have a longer period for spontaneous recovery, four to eight weeks. Whether spontaneous recovery occurs or not, treatment must begin immediately after the stroke. A traditional approach requires treatment beginning at the level of breakdown - in the case of paraphasia, at the level of the phoneme. There are commercially available workbooks that provide various activities such as letter, word-picture, or word-word matching, and sentence completion, among other things. The difficulty of these activities varies with the level of treatment. However, these treatments have not been proven to be clinically productive. Functional magnetic resonance imaging is the most widely used technique to study treatment-induced recovery, looking at activation of particular areas of the brain. There are many different ways to process fMRI scans, beginning with the pre-scanning process. Data must be normalized. There is also no consensus on whether or not single subject scans are more helpful than group scans to determine a general pattern of treatment. However, fMRI scans have a few disadvantages.
A 1988 study by Mary Boyle proposed a method focused on oral reading to treat phonemic paraphasias was partially successful, resulting in fewer phonemic paraphasias but a slower rate of speech. Treatments lasted for 50 minutes and occurred once a week. During these treatment sessions, the patient was instructed to look at twenty different phrases -each of these phrases consisted of one to three syllables - then read the phrase. If the patient failed to read the phrase, the process was repeated. If the patient failed to read the phrase again, the process was abandoned. To progress from a set of one syllable phrases to two syllable phrases and two syllable phrases to three syllable phrases, an 80% success rate was necessary. This treatment was partially successful. Although fewer phonemic paraphasias were produced due to this treatment, speaking efficiency was not improved by this study. This is partially because the focus of the treatment was on sound production rather than semantic content. Improvements lasted for six weeks before the patient regressed.
To date, very few interventions have been developed specifically for individuals with dyscalculia. Concrete manipulation activities have been used for decades to train basic number concepts for remediation purposes. This method facilitates the intrinsic relationship between a goal, the learner’s action, and the informational feedback on the action. A one-to-one tutoring paradigm designed by Lynn Fuchs and colleagues which teaches concepts in arithmetic, number concepts, counting, and number families using games, flash cards, and manipulables has proven successful in children with generalized math learning difficulties, but intervention has yet to be tested specifically on children with dyscalculia. These methods require specially trained teachers working directly with small groups or individual students. As such, instruction time in the classroom is necessarily limited. For this reason, several research groups have developed computer adaptive training programs designed to target deficits unique to dyscalculic individuals.
Software intended to remediate dyscalculia has been developed. While computer adaptive training programs are modeled after one-to-one type interventions, they provide several advantages. Most notably, individuals are able to practice more with a digital intervention than is typically possible with a class or teacher. As with one-to-one interventions, several digital interventions have also proven successful in children with generalized math learning difficulties. Räsänen and colleagues have found that games such as The Number Race and Graphogame-math can improve performance on number comparison tasks in children with generalized math learning difficulties.
Several digital interventions have been developed for dyscalculics specifically. Each attempts to target basic processes that are associated with maths difficulties. Rescue Calcularis was one early computerized intervention that sought to improve the integrity of and access to the mental number line. Other digital interventions for dyscalculia adapt games, flash cards, and manipulables to function through technology.
While each intervention claims to improve basic numerosity skills, the authors of these interventions do admit that repetition and practice effects may be a factor involved in reported performance gains. An additional criticism is that these digital interventions lack the option to manipulate numerical quantities. While the previous two games provide the correct answer, the individual using the intervention cannot actively determine, through manipulation, what the correct answer should be. Butterworth and colleagues argued that games like The Number Bonds, which allows an individual to compare different sized rods, should be the direction that digital interventions move towards. Such games use manipulation activities to provide intrinsic motivation towards content guided by dyscalculia research. One of these serious games is Meister Cody – Talasia, an online training that includes the CODY Assessment – a diagnostic test for detecting dyscalculia. Based on these findings, Rescue Calcluaris was extended by adaptation algorithms and game forms allowing manipulation by the learners. It was found to improve addition, subtraction and number line tasks, and was made available as Dybuster Calcularis.
A study used transcranial direct current stimulation (TDCS) to the parietal lobe during numerical learning and demonstrated selective improvement of numerical abilities that was still present six months later in typically developing individuals. Improvement were achieved by applying anodal current to the right parietal lobe and cathodal current to the left parietal lobe and contrasting it with the reverse setup. When the same research group used tDCS in a training study with two dyscalculic individuals, the reverse setup (left anodal, right cathodal) demonstrated improvement of numerical abilities.
Treatment for dysgraphia varies and may include treatment for motor disorders to help control writing movements. The use of occupational therapy can be effective in the school setting, and teachers should be well informed about dysgraphia to aid in carry-over of the occupational therapist's interventions. Treatments may address impaired memory or other neurological problems. Some physicians recommend that individuals with dysgraphia use computers to avoid the problems of handwriting. Dysgraphia can sometimes be partially overcome with appropriate and conscious effort and training. The International Dyslexia Association suggests the use of kinesthetic memory through early training by having the child overlearn how to write letters and to later practice writing with their eyes closed or averted to reinforce the feel of the letters being written. They also suggest teaching the students cursive writing as it has fewer reversible letters and can help lessen spacing problems, at least within words, because cursive letters are generally attached within a word.
Diagnosing dysgraphia can be challenging but can be done at facilities specializing in learning disabilities. It is suggested that those who believe they may have dysgraphia seek a qualified clinician to be tested. Clinicians will have the client self-generate written sentences and paragraphs, and copy age-appropriate text. They will assess the output of writing, as well as observe the client's posture while writing, their grip on the writing instrument, and will ask the client to either tap their finger or turn their wrists repeatedly to assess fine motor skills.
Through the use of compensation strategies, therapy and educational support, dyslexic individuals can learn to read and write. There are techniques and technical aids which help to manage or conceal symptoms of the disorder. Removing stress and anxiety alone can sometimes improve written comprehension. For dyslexia intervention with alphabet-writing systems, the fundamental aim is to increase a child's awareness of correspondences between graphemes (letters) and phonemes (sounds), and to relate these to reading and spelling by teaching how sounds blend into words. It has been found that reinforced collateral training focused on reading and spelling yields longer-lasting gains than oral phonological training alone. Early intervention that is done for children at a young age can be successful in reducing reading failure.
There is some evidence that the use of specially-tailored fonts may help with dyslexia. These fonts, which include Dyslexie, OpenDyslexic, and Lexia Readable, were created based on the idea that many of the letters of the Latin alphabet are visually similar and may, therefore, confuse people with dyslexia. Dyslexie and OpenDyslexic both put emphasis on making each letter more distinctive in order to be more easily identified. The benefits, however, might simply be due to the added spacing between words.
There have been many studies conducted regarding intervention in dyslexia. Among these studies one meta-analysis found that there was functional activation as a result.
There is no evidence demonstrating that the use of music education is effective in improving dyslexic adolescents' reading skills.
There is currently no known curative treatment for SD. The average duration of illness is 8–10 years, and its progression cannot be slowed. Progression of SD can lead to behavioral and social difficulties, thus supportive care is essential for improving quality of life in SD patients as they grow more incomprehensible.
Continuous practice in lexical learning has been shown to improve semantic memory in SD patients.
SD has no known preventative measures.
Due to the progressive, continuous nature of the disease, improvement over time seldom occurs in patients with PPA as it often does in patients with aphasias caused by trauma to the brain.
In terms of medical approaches to treating PPA, there are currently no drugs specifically used for patients with PPA, nor are there any specifically designed interventions for PPA. A large reason for this is the limited research that has been done on this disease. However, in some cases, patients with PPA are prescribed the same drugs Alzheimer's patients are normally prescribed.
The primary approach to treating PPA has been with behavioral treatment, with the hope that these methods can provide new ways for patients to communicate in order to compensate for their deteriorated abilities. Speech therapy can assist an individual with strategies to overcome difficulties. There are three very broad categories of therapy interventions for aphasia: restorative therapy approaches, compensatory therapy approaches, and social therapy approaches. Rapid and sustained improvement in speech and dementia in a patient with primary progressive aphasia utilizing off-label perispinal etanercept, an anti-TNF treatment strategy also used for Alzheimer's, has been reported. A video depicting the patient's improvement was published in conjunction with the print article. These findings have not been independently replicated and remain controversial.
In incidents where tumors and their pressure effects are the cause of pure word deafness, removal of the tumor has been shown to allow for the return of most auditory verbal comprehension.
As autotopagnosia arises from neurological and irreversible damage, options regarding symptom reversal or control are limited. As of April 2010, there are no known specific treatments for autotopagnosia.
No medications or pharmaceutical remedies have been approved by the U.S. Food and Drug Administration to treat or cure autotopagnosia. There have been cases in which extensive rehabilitation has been beneficial following restitution, repetitive training to correct the impaired function, and compensation of other skills to make up for the deficit. Rehabilitation is not a definitive treatment and only shows signs of slight improvement in a small percentage of autotopagnosia patients. The condition of the disease can be monitored with continued neurological examination and using a CT scan to note the progression of the parietal lesion.
There have been many different studies done in an attempt to treat deep dyslexics, all which have been met with varying success. One method that has been frequently used is to teach patients to sound out words using grapheme-to-phoneme correspondence rules (for example, using single letter graphemes such as the letter 'B" to link with larger words such as "Baby", allowing for association of phonemes). Such methods are known as "non-lexically based reading treatments". Other studies have looked at attempting to repair the semantic-lexical route, known as "lexically based treatment". Regardless of the methodology, treatment studies with deep dyslexics are difficult because much of the information regarding this disability is still heavily debated. Treatment options may be successful on repairing one route of reading but not another, and success for one patient may not translate to success in another.
The affected individual may not realize that they have a visual problem and may complain of becoming "clumsy" or "muddled" when performing familiar tasks such as setting the table or simple DIY.
Anosognosia, a lack of awareness of the deficit, is common and can cause therapeutic resistance. In some agnosias, such as prosopagnosia, awareness of the deficit is often present; however shame and embarrassment regarding the symptoms can be a barrier in admission of a deficiency. Because agnosias result from brain lesions, no direct treatment for them currently exists, and intervention is aimed at utilization of coping strategies by patients and those around them. Sensory compensation can also develop after one modality is impaired in agnostics
General principles of treatment:
- restitution
- repetitive training of impaired ability
- development of compensatory strategies utilizing retained cognitive functions
Partial remediation is more likely in cases with traumatic/vascular lesions, where more focal damage occurs, than in cases where the deficit arises out of anoxic brain damage, which typically results in more diffuse damage and multiple cognitive impairments. However, even with forms of compensation, some afflicted individuals may no longer be able to fulfill the requirements of their occupation or perform common tasks, such as, eating or navigating. Agnostics are likely to become more dependent on others and to experience significant changes to their lifestyle, which can lead to depression or adjustment disorders.
Management strategies for acquired prosopagnosia, such as a person who has difficulty recognizing people's faces after a stroke, generally have a low rate of success. Acquired prosopagnosia sometimes spontaneously resolves on its own.
Currently, no forms of treatment have proven effective in treating amusia. One study has shown tone differentiation techniques to have some success, however future research on treatment of this disorder will be necessary to verify this technique as an appropriate treatment.
Treatment of APD typically focuses on three primary areas: changing learning environment, developing higher-order skills to compensate for the disorder, and remediation of the auditory deficit itself. However, there is a lack of well-conducted evaluations of intervention using randomized controlled trial methodology. Most evidence for effectiveness adopts weaker standards of evidence, such as showing that performance improves after training. This does not control for possible influences of practice, maturation, or placebo effects. Recent research has shown that practice with basic auditory processing tasks (i.e. auditory training) may improve performance on auditory processing measures and phonemic awareness measures. Changes after auditory training have also been recorded at the physiological level. Many of these tasks are incorporated into computer-based auditory training programs such as Earobics and Fast ForWord, an adaptive software available at home and in clinics worldwide, but overall, evidence for effectiveness of these computerised interventions in improving language and literacy is not impressive. One small-scale uncontrolled study reported successful outcomes for children with APD using auditory training software.
Treating additional issues related to APD can result in success. For example, treatment for phonological disorders (difficulty in speech) can result in success in terms of both the phonological disorder as well as APD. In one study, speech therapy improved auditory evoked potentials (a measure of brain activity in the auditory portions of the brain).
While there is evidence that language training is effective for improving APD, there is no current research supporting the following APD treatments:
- Auditory Integration Training typically involves a child attending two 30-minute sessions per day for ten days.
- Lindamood-Bell Learning Processes (particularly, the Visualizing and Verbalizing program)
- Physical activities that require frequent crossing of the midline (e.g., occupational therapy)
- Sound Field Amplification
- Neuro-Sensory Educational Therapy
- Neurofeedback
However, use of a FM transmitter has been shown to produce significant improvements over time with children.