Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
The Jarisch-Herxheimer reaction, which is the response to the body after endotoxins are released by the death of harmful organisms in the human body, starts usually during the first day of antibiotic treatment. The reaction increases the person's body temperature, decreases the overall blood pressure (both systolic and diastolic levels), and results in leukopenia and rigors in the body. This reaction can occur during any treatment of spirochete diseases.
It is important to realize that syphilis can recur. An individual who has had the disease once, even if it has been treated, does not prevent the person from experiencing recurrence of syphilis. Individuals can be re-infected, and because syphilis sores can be hidden, it may not be obvious that the individual is infected with syphilis. In these cases, it is vital to become tested and treated immediately to reduce spread of the infection.
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
The most popular treatment forms for any type of syphilis uses penicillin, which has been an effective treatment used since the 1940s.
Other forms also include Benzathine penicillin, which is usually used for primary and secondary syphilis (it has no resistance to penicillin however). Benzathine penicillin is used for long acting form, and if conditions worsen, penicillin G is used for late syphilis.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
On the basis of the laboratory evidence and case reports, amphotericin B has been the traditional mainstay of PAM treatment since the first reported survivor in the United States in 1982.
Treatment has often also used combination therapy with multiple other antimicrobials in addition to amphotericin, such as fluconazole, miconazole, rifampicin and azithromycin. They have shown limited success only when administered early in the course of an infection. Fluconazole is commonly used as it has been shown to have synergistic effects against naegleria when used with amphotericin in-vitro.
While the use of rifampicin has been common, including in all four North American cases of survival, its continued use has been questioned. It only has variable activity in-vitro and it has strong effects on the therapeutic levels of other antimicrobials used by inducing cytochrome p450 pathways.
In 2013, the two most recent successfully treated cases in the United States utilized drug combinations that included the medication miltefosine as well as targeted temperature management to manage brain swelling that is secondary to the infection. As of 2015 there were no data on how well miltefosine is able to reach the central nervous system. As of 2015 the U.S. CDC offered miltefosine to doctors for the treatment of free-living ameobas including naegleria.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Infection in otherwise healthy adults tends to be more severe. Treatment with antiviral drugs (e.g. acyclovir or valacyclovir) is generally advised, as long as it is started within 24–48 hours from rash onset. Remedies to ease the symptoms of chickenpox in adults are basically the same as those used for children. Adults are more often prescribed antiviral medication, as it is effective in reducing the severity of the condition and the likelihood of developing complications. Antiviral medicines do not kill the virus but stop it from multiplying. Adults are advised to increase water intake to reduce dehydration and to relieve headaches. Painkillers such as paracetamol (acetaminophen) are recommended, as they are effective in relieving itching and other symptoms such as fever or pains. Antihistamines relieve itching and may be used in cases where the itching prevents sleep, because they also act as a sedative. As with children, antiviral medication is considered more useful for those adults who are more prone to develop complications. These include pregnant women or people who have a weakened immune system.
Sorivudine, a nucleoside analogue, has been reported to be effective in the treatment of primary varicella in healthy adults (case reports only), but large-scale clinical trials are still needed to demonstrate its efficacy.
After recovering from chickenpox, it is recommended by doctors that adults take one injection of VZV immune globulin and one injection of varicella vaccine or herpes zoster vaccine.
Chromoblastomycosis is very difficult to cure. The primary treatments of choice are:
- Itraconazole, an antifungal azole, is given orally, with or without flucytosine.
- Alternatively, cryosurgery with liquid nitrogen has also been shown to be effective.
Other treatment options are the antifungal drug terbinafine, an experimental drug posaconazole, and heat therapy.
Antibiotics may be used to treat bacterial superinfections.
Amphotericin B has also been used.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
Treatment is normally by a single intramuscular injection of penicillin, or by a course of penicillin, erythromycin or tetracycline tablets. A single oral dose of azithromycin was shown to be as effective as intramuscular penicillin. Primary and secondary stage lesions may heal completely, but the destructive changes of tertiary yaws are largely irreversible.
No treatment exists for the viral infection. Antibiotics may help prevent secondary infections.
Vaccination is available in different forms, usually for naive flocks.
Good biosecurity measures should be maintained including adequate quarantine, isolation, separation of different age groups and disinfection.
If aciclovir by mouth is started within 24 hours of rash onset, it decreases symptoms by one day but has no effect on complication rates. Use of acyclovir therefore is not currently recommended for individuals with normal immune function. Children younger than 12 years old and older than one month are not meant to receive antiviral drugs unless they have another medical condition which puts them at risk of developing complications.
Treatment of chickenpox in children is aimed at symptoms while the immune system deals with the virus. With children younger than 12 years, cutting nails and keeping them clean is an important part of treatment as they are more likely to scratch their blisters more deeply than adults.
Aspirin is highly contraindicated in children younger than 16 years, as it has been related to Reye syndrome.
Prognosis depends greatly on the nature and severity of the condition. Some deficiencies cause early mortality (before age one), others with or even without treatment are lifelong conditions that cause little mortality or morbidity. Newer stem cell transplant technologies may lead to gene based treatments of
debilitating and fatal genetic immune deficiencies. Prognosis of acquired immune deficiencies depends on avoiding or treating the causative agent or
condition (like AIDS).
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
One of the potential side effects of treatment is the Jarisch-Herxheimer reaction. It frequently starts within one hour and lasts for 24 hours, with symptoms of fever, muscle pains, headache, and a fast heart rate. It is caused by cytokines released by the immune system in response to lipoproteins released from rupturing syphilis bacteria.
For neurosyphilis, due to the poor penetration of benzylpenicillin into the central nervous system, those affected are recommended to be given large doses of intravenous penicillin for a minimum of 10 days. If a person is allergic, ceftriaxone may be used or penicillin desensitization attempted. Other late presentations may be treated with once-weekly intramuscular benzylpenicillin for three weeks. If allergic, as in the case of early disease, doxycycline or tetracycline may be used, albeit for a longer duration. Treatment at this stage limits further progression but has only slight effect on damage which has already occurred.
Antibiotics are given to treat any bacterial infection present. Cough suppressants are used if the cough is not productive. NSAIDs are often given to reduce fever and upper respiratory inflammation. Prevention is by vaccinating for canine adenovirus, distemper, parainfluenza, and "Bordetella". In kennels, the best prevention is to keep all the cages disinfected. In some cases, such as "doggie daycares" or nontraditional playcare-type boarding environments, it is usually not a cleaning or disinfecting issue, but rather an airborne issue, as the dogs are in contact with each other's saliva and breath. Although most kennels require proof of vaccination, the vaccination is not a fail-safe preventative. Just like human influenza, even after receiving the vaccination, a dog can still contract mutated strains or less severe cases.
There is currently no effective marburgvirus-specific therapy for MVD. Treatment is primarily supportive in nature and includes minimizing invasive procedures, balancing fluids and electrolytes to counter dehydration, administration of anticoagulants early in infection to prevent or control disseminated intravascular coagulation, administration of procoagulants late in infection to control hemorrhaging, maintaining oxygen levels, pain management, and administration of antibiotics or antimycotics to treat secondary infections. Experimentally, recombinant vesicular stomatitis Indiana virus (VSIV) expressing the glycoprotein of MARV has been used successfully in nonhuman primate models as post-exposure prophylaxis. Novel, very promising, experimental therapeutic regimens rely on antisense technology: phosphorodiamidate morpholino oligomers (PMOs) targeting the MARV genome could prevent disease in nonhuman primates. Leading medications from Sarepta and Tekmira both have been successfully used in European humans as well as primates.
To increase their effectiveness, vaccines should be administered as soon as possible after a dog enters a high-risk area, such as a shelter. 10 to 14 days are required for partial immunity to develop. Administration of B. bronchiseptica and canine-parainfluenza vaccines may then be continued routinely, especially during outbreaks of kennel cough. There are several methods of administration, including parenteral and intranasal. However, the intranasal method has been recommended when exposure is imminent, due to a more rapid and localized protection. Several intranasal vaccines have been developed that contain canine adenovirus in addition to B bronchiseptica and canine-parainfluenza virus antigens. Studies have thus far not been able to determine which formula of vaccination is the most efficient. Adverse effects of vaccinations are mild, but the most common effect observed up to 30 days after administration is nasal discharge. Vaccinations are not always effective. In one study it was found that 43.3% of all dogs in the study population with respiratory disease had in fact been vaccinated.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Id reactions are frequently unresponsive to corticosteroid therapy, but clear when the focus of infection or infestation is treated. Therefore, the best treatment is to treat the provoking trigger. Sometimes medications are used to relieve symptoms.These include topical corticosteroids, and antihistamines. If opportunistic bacterial infection occurs, antibiotics may be required.
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
Broadspectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection.
If a pregnant mother is identified as being infected with syphilis, treatment can effectively prevent congenital syphilis from developing in the fetus, especially if he or she is treated before the sixteenth week of pregnancy. The fetus is at greatest risk of contracting syphilis when the mother is in the early stages of infection, but the disease can be passed at any point during pregnancy, even during delivery (if the child had not already contracted it). A woman in the secondary stage of syphilis decreases her fetus's risk of developing congenital syphilis by 98% if she receives treatment before the last month of pregnancy. An afflicted child can be treated using antibiotics much like an adult; however, any developmental symptoms are likely to be permanent.
Kassowitz’s law is an empirical observation used in context of congenital syphilis stating that the greater the duration between the infection of the mother and conception, the better is the outcome for the infant. Features of a better outcome include less chance of stillbirth and of developing congenital syphilis.
The Centers for Disease Control and Prevention recommends treating symptomatic or babies born to infected mother with unknown treatment status with procaine penicillin G, 50,000 U/kg dose IM a day in a single dose for 10 days. Treatment for these babies can vary on a case by case basis. Treatment cannot reverse any deformities, brain, or permanent tissue damage that has already occurred.