Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
The modern goals of glaucoma management are to avoid glaucomatous damage and nerve damage, and preserve visual field and total quality of life for patients, with minimal side effects. This requires appropriate diagnostic techniques and follow-up examinations, and judicious selection of treatments for the individual patient. Although intraocular pressure is only one of the major risk factors for glaucoma, lowering it via various pharmaceuticals and/or surgical techniques is currently the mainstay of glaucoma treatment.
Vascular flow and neurodegenerative theories of glaucomatous optic neuropathy have prompted studies on various neuroprotective therapeutic strategies, including nutritional compounds, some of which may be regarded by clinicians as safe for use now, while others are on trial.
The preferred treatment of congenital glaucoma is surgical not medical. The initial procedures of choice are goniotomy or trabeculotomy if the cornea is clear, and trabeculectomy ab externo if the cornea is hazy. The success rates are similar for both procedures in patients with clear corneas. Trabeculectomy and shunt procedures should be reserved for those cases in which goniotomy or trabeculotomy has failed. Cyclophotocoagulation is necessary in some intractable cases but should be avoided whenever possible because of its potential adverse
effects on the lens and the retina.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
Currently, there is not a treatment option for regaining vision by developing a new eye. There are, however, cosmetic options so the absence of the eye is not as noticeable. Typically, the child will need to go to a prosthetic specialist to have conformers fitted into the eye. Conformers are made of clear plastic and are fitted into the socket to promote socket growth and expansion. As the child's face grows and develops, the conformer will need to be changed. An expander may also be needed in anophthalmia to expand the socket that is present. The conformer is changed every few weeks the first two years of life. After that, a painted prosthetic eye can be fitted for the child's socket. The prosthetic eye can be cleaned with mild baby soap and water. Rubbing alcohol should be avoided because it may damage the prosthetic eye. Children need to be checked regularly to ensure the fit and size is appropriate.
If the proper actions are not taken to expand the orbit, many physical deformities can appear. It is important that if these deformities do appear, that surgery is not done until at least the first two years of life. Many people get eye surgery, such as upper eyelid ptosis surgery and lower eyelid tightening. These surgeries can restore the function of the surrounding structures like the eyelid in order to create the best appearance possible. This is more common with people who have degenerative anophthalmia.
While PEX itself is untreatable as of 2011, it is possible for doctors to minimize the damage to vision and to the optic nerves by the same medical techniques used to prevent glaucoma.
- Eyedrops. This is usually the first treatment method. Eyedrops can help reduce intraocular pressure within the eye. The medications within the eyedrops can include beta blockers (such as levobunolol or timolol) which slow the production of the aqueous humor. And other medications can increase its outflow, such as prostaglandin analogues (e.g. latanoprost). And these medicines can be used in various combinations. In most cases of glaucoma, eyedrops alone will suffice to solve the problem.
- Laser surgery. A further treatment is a type of laser therapy known as trabeculoplasty in which a high-energy laser beam is pointed at the trabecular meshwork to cause it to "remodel and open" and improve the outflows of the aqueous humor. These can be done as an outpatient procedure and take less than twenty minutes. One report suggests this procedure is usually effective.
- Eye surgery. Surgery is the treatment method of last resort if the other methods have not worked. It is usually effective at preventing glaucoma. Eye surgery on PEX patients can be subject to medical complications if the fibers which hold the lens have become weakened because of a buildup from the flakes; if the lens-holding fibers have weakened, then the lens may become loose, and complications from eye surgery may result. In such cases, it is recommended that surgeons act quickly to repair the phacodonesis before the lenses have dropped. A surgeon cuts an opening in the white portion of the eye known as the sclera, and removes a tiny area of the trabecular meshwork which enables the aqueous humor to discharge. This lowers the internal pressure within the eye and lessens the chance of future damage to the optic nerve. Cases with pseudophacodonesis and dislocated IOL have been increasing in number, according to one report. In cataract surgery, complications resulting from PEX include capsular rupture and vitreous loss.
- Drug therapy. There are speculations that if genetics plays a role in PEX, and if the specific genes involved can be identified, that possibly drugs can be developed to counteract these mutations or their effects. But such drugs have not been developed as of 2011.
Patients should continue to have regular eye examinations so that physicians can monitor pressure levels and check whether medicines are working.
Ocular hypertension is treated with either medications or laser. Medications that lower intraocular pressure work by decreasing aqueous humor production and/or increasing aqueous humor outflow. Laser trabeculoplasty works by increasing outflow. The cannabinoids found in cannabis sativa and indica (marijuana) have been shown to reduce intraocular pressure, by up to 50% for approximately four to five hours. But due to the duration of effect, significant side-effect profile, and lack of research proving efficacy, the American Glaucoma Society issued a position statement in 2009 regarding the use of marijuana as a treatment for glaucoma.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
Untreated glaucoma leads to total blindness. Surgical treatment is required. Presently-utilized surgical procedures include goniotomy, trabeculotomy, or trabeculectomy.
Without treatment, NTG leads to progressive visual field loss and in the last consequence to blindness. The mainstay of conventional glaucoma therapy, reducing IOP by pressure-lowering eye drops or by surgery, is applied in cases of NTG as well. The rationale: the lower the IOP, the less the risk of ganglion cell loss and thus in the long run of visual function. The appearance of disc hemorrhages is always a warning sign that therapeutic approaches are not successful - the small bleedings, usually described as flame-shaped, almost always indicate a progression of the disease.
Besides this classical glaucoma therapy, the vascular component that exists in the majority of NTG patients has to be managed as well. Dips in blood pressure or a generally low blood pressure have to be prevented - which is a rather uncommon approach in modern medicine where high blood pressure is always seen as an immense clinical challenge, affecting large segments of the population. In patients with systemic hypertension under therapy, the blood pressure should not be lowered too rigorously. NTG might be the only severe (= sight-threatening) disease caused in numerous cases by a too low blood pressure. Both magnesium and low dose calcium channel blockers have been employed in the treatment of some NTG patients. There are therapeutic approaches to underlying conditions like Flammer syndrome. A change in nutrition like the intake of sodium-rich foods has been tried as has the oral administration of low-dosed steroids. Lifestyle interventions are recommended in patients with Flammer syndrome like avoidance of fasting and certain stimuli like a cold environment and stress.
Penetrating karatoplasty and endothelial keratoplasty can be used as treatments for severe cases of ICE [2,8]. Because glaucoma and elevated intraocular pressure are often present in ICE patients, long term follow up may be needed to ensure adequate intraocular pressures are maintained [2,7]
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Pigment dispersion syndrome (PDS) is an affliction of the eye that can lead to a form of glaucoma known as pigmentary glaucoma. It takes place when pigment cells slough off from the back of the iris and float around in the aqueous humor. Over time, these pigment cells can accumulate in the anterior chamber in such a way that it can begin to clog the trabecular meshwork (the major site of aqueous humour drainage), which can in turn prevent the aqueous humour from draining and therefore increases the pressure inside the eye. With PDS, the intraocular pressure tends to spike at times and then can return to normal. Exercise has been shown to contribute to spikes in pressure as well. When the pressure is great enough to cause damage to the optic nerve, this is called pigmentary glaucoma. As with all types of glaucoma, when damage happens to the optic nerve fibers, the vision loss that occurs is irreversible and painless.
This condition is rare, but occurs most often in Caucasians, particularly men, and the age of onset is relatively low: mid 20s to 40s. As the crystalline lens hardens with age, the lens zonules pull away from the iris and the syndrome lessens and stops. Most sufferers are nearsighted.
There is no cure yet, but pigmentary glaucoma can be managed with eye drops or treated with simple surgeries. One of the surgeries is the YAG laser procedure in which a laser is used to break up the pigment clogs, and reduce pressure. If caught early and treated, chances of glaucoma are greatly reduced. Sufferers are often advised not to engage in high-impact sports such as long-distance running or martial arts, as strong impacts can cause more pigment cells to slough off.
A 2016 Cochrane Review sought to determine the effectiveness of YAG laser iridotomy versus no laser iridotomy for pigment dispersion syndrome and pigmentary glaucoma, in 195 participants, across five studies. No clear benefits in preventing loss of visual field were found for eyes treated with peripheral laser iridotomy. There was weak evidence suggesting that laser iridotomy could be more effective in lowering intraocular pressure in eyes versus no treatment.
Controversies exist around eliminating this disorder from breeding Collies. Some veterinarians advocate only breeding dogs with no evidence of disease, but this would eliminate a large portion of potential breeding stock. Because of this, others recommend only breeding mildly affected dogs, but this would never completely eradicate the condition. Also, mild cases of choroidal hypoplasia may become pigmented and therefore undiagnosable by the age of three to seven months. If puppies are not checked for CEA before this happens, they may be mistaken for normal and bred as such. Checking for CEA by seven weeks of age can eliminate this possibility. Diagnosis is also difficult in dogs with coats of dilute color because lack of pigment in the choroid of these animals can be confused with choroidal hypoplasia. Also, because of the lack of choroidal pigment, mild choroidal hypoplasia is difficult to see, and therefore cases of CEA may be missed.
Until recently, the only way to know if a dog was a carrier was for it to produce an affected puppy. However, a genetic test for CEA became available at the beginning of 2005, developed by the Baker Institute for Animal Health, Cornell University, and administered through OptiGen. The test can determine whether a dog is affected, a carrier, or clear, and is therefore a useful tool in determining a particular dog's suitability for breeding.
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
In order to allow timely intervention, a system of monitoring is undertaken for infants at risk of developing ROP. These monitoring protocols differ geographically because the definition of high-risk is not uniform or perfectly defined. In the USA the consensus statement of experts is informed by data derived by clinical trials and published in Pediatrics 2006. They included infants with birthweights under 1500 grams or under 30 weeks gestation in most cases. The first examination should take place within the first 4 weeks of life, and regular, weekly examination is required until it is clear that the eyes are not going to develop disease needing treatment, or one or both eyes develop disease requiring treatment. Treatment should be administered within a 48 hours, as the condition can progress rapidly.
Following pupillary dilation using eye drops, the retina is examined using a special lighted instrument (an indirect ophthalmoscope). The peripheral portions of the retina are sometimes pushed into view using scleral depression. Examination of the retina of a premature infant is performed to determine how far the retinal blood vessels have grown (the zone), and whether or not the vessels are growing flat along the wall of the eye (the stage). Once the vessels have grown into Zone 3 (see below) it is usually safe to discharge the child from further screening for ROP. The stage of ROP refers to the character of the leading edge of growing retinal blood vessels (at the vascular-avascular border).
Without the focusing power of the lens, the eye becomes very farsighted. This can be corrected by wearing glasses, contact lenses, or by implant of an artificial lens. Artificial lenses are described as "pseudophakic." Also, since the lens is responsible for adjusting the focus of vision to different lengths, patients with aphakia have a total loss of accommodation.
Some individuals have said that they perceive ultraviolet light, invisible to those with a lens, as whitish blue or whitish-violet.
The disease is chronic and often progresses slowly. Prognosis is generally poor when associated with glaucoma [1,2].
Lens subluxation is also seen in dogs and is characterized by a partial displacement of the lens. It can be recognized by trembling of the iris (iridodonesis) or lens (phacodonesis) and the presence of an aphakic crescent (an area of the pupil where the lens is absent). Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration, prolapse of the vitreous into the anterior chamber, and an increase or decrease of anterior chamber depth. Removal of the lens before it completely luxates into the anterior chamber may prevent secondary glaucoma. A nonsurgical alternative involves the use of a miotic to constrict the pupil and prevent the lens from luxating into the anterior chamber.
Primary juvenile glaucoma is glaucoma that develops due to ocular hypertension and is evident either at birth or within the first few years of life. It is caused due to abnormalities in the anterior chamber angle development that obstruct aqueous outflow in the absence of systemic anomalies or other ocular malformation.
Collie eye anomaly (CEA) is a congenital, inherited, bilateral eye disease of dogs, which affects the retina, choroid, and sclera. It can be a mild disease or cause blindness. CEA is caused by a simple autosomal recessive gene defect. There is no treatment.
The pressure within the eye is maintained by the balance between the fluid that enters the eye through the ciliary body and the fluid that exits the eye through the trabecular meshwork.