Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
Paracetamol (acetaminophen) and NSAIDs, such as ibuprofen, may be used to reduce fever and pain. Prednisone, a corticosteroid, while used to try to reduce throat pain or enlarged tonsils, remains controversial due to the lack of evidence that it is effective and the potential for side effects. Intravenous corticosteroids, usually hydrocortisone or dexamethasone, are not recommended for routine use but may be useful if there is a risk of airway obstruction, a very low platelet count, or hemolytic anemia.
There is little evidence to support the use of antivirals such as aciclovir and valacyclovir although they may reduce initial viral shedding. Although antivirals are not recommended for people with simple infectious mononucleosis, they may be useful (in conjunction with steroids) in the management of severe EBV manifestations, such as EBV meningitis, peripheral neuritis, hepatitis, or hematologic complications.
Although antibiotics exert no antiviral action they may be indicated to treat bacterial secondary infections of the throat, such as with streptococcus (strep throat). However, ampicillin and amoxicillin are not recommended during acute Epstein–Barr virus infection as a diffuse rash may develop.
Infectious mononucleosis is generally self-limiting, so only symptomatic or supportive treatments are used. The need for rest and return to usual activities after the acute phase of the infection may reasonably be based on the person's general energy levels. Nevertheless, in an effort to decrease the risk of splenic rupture experts advise avoidance of contact sports and other heavy physical activity, especially when involving increased abdominal pressure or the Valsalva maneuver (as in rowing or weight training), for at least the first 3–4 weeks of illness or until enlargement of the spleen has resolved, as determined by a treating physician.
No specific cure is known. Treatment is largely supportive. Nonsteroidal anti-inflammatory drugs (NSAIDs) are indicated for tender lymph nodes and fever, and corticosteroids are useful in severe extranodal or generalized disease.
Symptomatic measures aimed at relieving the distressing local and systemic complaints have been described as the main line of management of KFD. Analgesics, antipyretics, NSAIDs, and corticosteroids have been used. If the clinical course is more severe, with multiple flares of bulky enlarged cervical lymph nodes and fever, then a low-dose corticosteroid treatment has been suggested.
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. In severe cases, steroids such as corticosteroids may be used to control the swelling of the throat and tonsils. Currently, there are no antiviral drugs or vaccines available.
It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.
Treatment is supportive as the infection is frequently self-limiting. Antipyretics (i.e., fever reducers) are commonly used. The rash usually does not itch but can be mildly painful. There is no specific therapy.
Currently, no treatment is available.
Good husbandry measures, such as high water quality, low stocking density, and no mixing of batches, help to reduce disease incidence. To eradicate the disease, very strict protocol with regards to movement, water sources and stock replacement must be in place – and still it is difficult to achieve and comes at a high economic cost.
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Antibiotic ointment is typically applied to the newborn's eyes within 1 hour of birth as prevention against gonococcal ophthalmia. This maybe erythromycin, tetracycline, or silver nitrate.
A skin and skin structure infection (SSSI), also referred to as skin and soft tissue infection (SSTI) or acute bacterial skin and skin structure infection (ABSSSI), is an infection of skin and associated soft tissues (such as loose connective tissue and mucous membranes). The pathogen involved is usually a bacterial species. Such infections often requires treatment by antibiotics.
Until 2008, two types were recognized, complicated skin and skin structure infection (cSSSI) and uncomplicated skin and skin structure infection (uSSSI). "Uncomplicated" SSSIs included simple abscesses, impetiginous lesions, furuncles, and cellulitis. "Complicated" SSSIs included infections either involving deeper soft tissue or requiring significant surgical intervention, such as infected ulcers, burns, and major abscesses or a significant underlying disease state that complicates the response to treatment. Superficial infections or abscesses in an anatomical site, such as the rectal area, where the risk of anaerobic or gram-negative pathogen involvement is higher, should be considered complicated infections. The two categories had different regulatory approval requirements. The uncomplicated category (uSSSI) is normally only caused by "Staphylococcus aureus" and "Streptococcus pyogenes", whereas the complicated category (cSSSI) might also be caused by a number of other pathogens. In cSSSI, the pathogen is known in only about 40% of cases.
Because cSSSIs are usually serious infections, physicians do not have the time for a culture to identify the pathogen, so most cases are treated empirically, by choosing an antibiotic agent based on symptoms and seeing if it works. For less severe infections, microbiologic evaluation via tissue culture has been demonstrated to have high utility in guiding management decisions. To achieve efficacy, physicians use broad-spectrum antibiotics. This practice contributes in part to the growing incidence of antibiotic resistance, a trend exacerbated by the widespread use of antibiotics in medicine in general. The increased prevalence of antibiotic resistance is most evident in methicillin-resistant "Staphylococcus aureus" (MRSA). This species is commonly involved in cSSSIs, worsening their prognosis, and limiting the treatments available to physicians. Drug development in infectious disease seeks to produce new agents that can treat MRSA.
Since 2008, the U.S. Food and Drug Administration has changed the terminology to "acute bacterial skin and skin structure infections" (ABSSSI). The Infectious Diseases Society of America (IDSA) has retained the term "skin and soft tissue infection".
Most treatments are topical or oral antifungal medications.
Topical agents include ciclopirox nail paint, amorolfine or efinaconazole. Some topical treatments need to be applied daily for prolonged periods (at least 1 year). Topical amorolfine is applied weekly. Topical ciclopirox results in a cure in 6% to 9% of cases; amorolfine might be more effective. Ciclopirox when used with terbinafine appears to be better than either agent alone.
Oral medications include terbinafine (76% effective), itraconazole (60% effective) and fluconazole (48% effective). They share characteristics that enhance their effectiveness: prompt penetration of the nail and nail bed, persistence in the nail for months after discontinuation of therapy. Ketoconazole by mouth is not recommended due to side effects. Oral terbinafine is better tolerated than itraconazole. For superficial white onychomycosis, systemic rather than topical antifungal therapy is advised.
Prophylaxis needs antenatal, natal, and post-natal care.
- Antenatal measures include thorough care of mother and treatment of genital infections when suspected.
- Natal measures are of utmost importance as mostly infection occurs during childbirth. Deliveries should be conducted under hygienic conditions taking all aseptic measures. The newborn baby's closed lids should be thoroughly cleansed and dried.
- If it is determined that the cause is due to a blocked tear duct, a gentle palpation between the eye and the nasal cavity may be used to clear the tear duct. If the tear duct is not cleared by the time the newborn is one year old, surgery may be required.
- Postnatal measures include:
- Chemical ophthalmia neonatorum is a self-limiting condition and does not require any treatment.
- Gonococcal ophthalmia neonatorum needs prompt treatment to prevent complications. Topical therapy should include
Systemic therapy: Newborns with gonococcal ophthalmia neonatorum should be treated for seven days with one of the following regimens ceftriaxone, cefotaxime, ciprofloxacin, crystalline benzyl penicillin
- Other bacterial ophthalmia neonatorum should be treated by broad spectrum antibiotics drops and ointment for two weeks.
- Neonatal inclusion conjunctivitis caused by Chlamydia trachomatis responds well to topical tetracycline 1% or erythromycin 0.5% eye ointment QID for three weeks. However systemic erythromycin should also be given since the presence of chlamydia agents in conjunctiva implies colonization of upper respiratory tract as well. Both parents should also be treated with systemic erythromycin.
- Herpes simplex conjunctivitis should be treated with intravenous acyclovir for a minimum of 14 days to prevent systemic infection.
Chemical (keratolytic) or surgical debridement of the affected nail appears to improve outcomes.
As of 2014 evidence for laser treatment is unclear as the evidence is of low quality and varies by type of laser.
As of 2013 tea tree oil has failed to demonstrate benefit in the treatment of onychomycosis. A 2012 review by the National Institutes of Health found some small and tentative studies on its use.
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
PTLD may spontaneously regress on reduction or cessation of immunosuppressant medication, and can also be treated with addition of anti-viral therapy. In some cases it will progress to non-Hodgkin's lymphoma and may be fatal. A phase 2 study of adoptively transferred EBV-specific T cells demonstrated high efficacy with minimal toxicity.
Management is focused on removing the infectious source. The shunt is removed immediately and antibiotics are begun. The infected shunt, typically a ventriculoatrial shunt, may be replaced with a ventriculoperitoneal shunt.
People affected by the severest, often life-threatening, complications of cryoglobulinemic disease require urgent plasmapharesis and/or plasma exchange in order to rapidly reduce the circulating levels of their cryoglobulins. Complications commonly requiring this intervention include: hyperviscosity disease with severe symptoms of neurological (e.g. stroke, mental impairment, and myelitis) and/or cardiovascular (e.g., congestive heart failure, myocardial infarction) disturbances; vasculitis-driven intestinal ischemia, intestinal perforation, cholecystitis, or pancreatitis, causing acute abdominal pain, general malaise, fever, and/or bloody bowel movements; vasculitis-driven pulmonary disturbances (e.g. coughing up blood, acute respiratory failure, X-ray evidence of diffuse pulmonary infiltrates caused by diffuse alveolar hemorrhage); and severe kidney dysfunction due to intravascular deposition of immunoglobulins or vasculitis. Along with this urgent treatment, severely symptomatic patients are commonly started on therapy to treat any underlying disease; this treatment is often supplemented with anti-inflammatory drugs such as corticosteroids (e.g., dexamethasone) and/or immunosuppressive drugs. Cases where no underlying disease is known are also often treated with the latter corticosteroid and immunosuppressive medications.
There is no standard treatment for PLC. Treatments may include ultraviolet phototherapy, topical steroids, sun exposure, oral antibiotics, corticosteroid creams and ointments to treat rash and itching.
One study identified the enzyme bromelain as an effective therapeutic option for PLC.
The standard of care is administration of antifilarial drugs, most commonly Ivermectin or diethyl-carbamazine (DEC). The most efficacious dose in all nematode and parasitic infections is 200 µg/kg of ivermectin. There has also been other various anthelminthic drugs used, such as mebendazole, levamisole, albendazole and thiabendazole. In worst-case scenarios, surgery may be necessary to remove nematodes from the abdomen or chest. However, mild cases usually do not require treatment.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Treatment of mixed cryoglobulinemic disease is, similar to type I disease, directed toward treating any underlying disorder. This includes malignant (particularly Waldenström's macroglobulinemia in type II disease), infectious, or autoimmune diseases in type II and III disease. Recently, evidence of hepatitis C infection has been reported in the majority of mixed disease cases with rates being 70-90% in areas with high incidences of hepatitis C. The most effective therapy for hepatitis C-associated cryoglobulinemic disease consists of a combination of anti-viral drugs, pegylated INFα and ribavirin; depletion of B cells using rituximab in combination with antiviral therapy or used alone in patients refractory to antiviral therapy has also proven successful in treating the hepatitis C-associated disease. Data on the treatment of infectious causes other than hepatitis C for the mixed disease are limited. A current recommendation treats the underlying disease with appropriate antiviral, anti-bacterial, or anti-fungal agents, if available; in cases refractory to an appropriate drug, the addition of immunosuppressive drugs to the therapeutic regimen may improve results. Mixed cryoglobulinemic disease associated with autoimmune disorders is treated with immunosuppressive drugs: combination of a corticosteroid with either cyclophosphamide, azathioprine, or mycophenolate or combination of a corticosteroid with rituximab have been used successfully to treated mixed disease associated with autoimmune disorders.