Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of treatment, ribavirin is not registered for hepatitis E treatment, though off-label experience for treating chronic hepatitis E with this compound exists. The use of low doses of ribavirin over a three-month period has been associated with viral clearance in about two-thirds of chronic cases. Other possible treatments include pegylated interferon or a combination of ribavirin and pegylated interferon. In general, chronic HEV infection is associated with immunosuppressive therapies, but remarkably little is known about how different immunosuppressants affect HEV infection. In individuals with solid-organ transplantation, viral clearance can be achieved by temporal reduction of the level of immunosuppression.
Acute infection does not usually require treatment and most adults clear the infection spontaneously. Early antiviral treatment may be required in fewer than 1% of people, whose infection takes a very aggressive course (fulminant hepatitis) or who are immunocompromised. On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on medication and genotype. Treatment duration when medication is taken by mouth, however, is more variable and usually longer than one year.
Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. As of 2008, there are seven medications licensed for the treatment of infection in the United States. These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude), and the two immune system modulators interferon alpha-2a and PEGylated interferon alpha-2a (Pegasys). In 2015 the World Health Organization recommended tenofovir or entecavir as first-line agents. Those with current cirrhosis are in most need of treatment.
The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting PEGylated interferon, which is injected only once weekly. However, some individuals are much more likely to respond than others, and this might be because of the genotype of the infecting virus or the person's heredity. The treatment reduces viral replication in the liver, thereby reducing the viral load (the amount of virus particles as measured in the blood). Response to treatment differs between the genotypes. Interferon treatment may produce an e antigen seroconversion rate of 37% in genotype A but only a 6% seroconversion in type D. Genotype B has similar seroconversion rates to type A while type C seroconverts only in 15% of cases. Sustained e antigen loss after treatment is ~45% in types A and B but only 25–30% in types C and D.
No specific treatment for hepatitis A is known. Recovery from symptoms following infection may take several weeks or months. Therapy is aimed at maintaining comfort and adequate nutritional balance, including replacement of fluids lost from vomiting and diarrhoea.
Several alternative therapies are claimed by their proponents to be helpful for including milk thistle, ginseng, and colloidal silver. However, no alternative therapy has been shown to improve outcomes in , and no evidence exists that alternative therapies have any effect on the virus at all.
HCV induces chronic infection in 80% of infected persons. Approximately 95% of these clear with treatment. In rare cases, infection can clear without treatment. Those with chronic are advised to avoid medications toxic to the liver and alcohol. They should be vaccinated against hepatitis A and hepatitis B. Use of acetaminophen is generally considered safe at reduced doses. Nonsteroidal anti-inflammatory drugs (NSAIDs) are not recommended in those with advanced liver disease due to an increased risk of bleeding. Ultrasound surveillance for hepatocellular carcinoma is recommended in those with accompanying cirrhosis. Coffee consumption has been associated with a slower rate of liver scarring in those infected with HCV.
Chronic hepatitis B management aims to control viral replication, which is correlated with progression of disease. There have been 7 drug treatments approved to date in the United States:
- Injectable interferon alpha was the first therapy approved for chronic hepatitis B. It has several side effects, most of which are reversible with removal of therapy, but it has been supplanted by newer treatments for this indication. These include long-acting interferon bound to polyethylene glycol (pegylated interferon) and the oral nucleoside analogues.
- Pegylated interferon (PEG IFN) is dosed just once a week as a subcutaneous injection and is both more convenient and effective than standard interferon. Although it does not develop resistance as do many of the oral antivirals, it is poorly tolerated and requires close monitoring. PEG IFN is estimated to cost about $18,000 per year in the United States, compared to $2,500-8,700 for the oral medications; however, its treatment duration is 48 weeks as opposed to the oral antivirals, which require indefinite treatment for most patients (minimum 1 year). PEG IFN is not effective in patients with high levels of viral activity and cannot be used in immunosuppressed patients or those with cirrhosis.
- Lamivudine was the first approved oral nucleoside analogue. While effective and potent, lamivudine has been replaced by newer, more potent treatments in the Western world and is no longer recommended as first-line treatment. However, it is still used in areas where newer agents either have not been approved or are too costly. Generally, the course of treatment is a minimum of one year with a minimum of six additional months of "consolidation therapy." Based on viral response, longer therapy may be required, and certain patients require indefinite long-term therapy. Due to a less robust response in Asian patients, consolidation therapy is recommended to be extended to at least a year. All patients should be monitored for viral reactivation, which if identified, requires restarting treatment. Lamivudine is generally safe and well-tolerated. Many patients develop resistance, which is correlated with longer treatment duration. If this occurs, an additional antiviral is added. Lamivudine as a single treatment is contraindicated in patients coinfected with HIV, as resistance develops rapidly, but it can be used as part of a multidrug regimen.
- Adefovir dipivoxil, a nucleotide analogue, has been used to supplement lamivudine in patients who develop resistance, but is no longer recommended as first-line therapy.
- Entecavir is safe, well tolerated, less prone to developing resistance, and the most potent of the existing hepatitis B antivirals; it is thus a first-line treatment choice. It is not recommended for lamivudine-resistant patients or as monotherapy in patients who are HIV positive.
- Telbivudine is effective but not recommended as first-line treatment; as compared to entecavir, it is both less potent and more resistance prone.
- Tenofovir is a nucleotide analogue and an antiretroviral drug that is also used to treat HIV infection. It is preferred to adefovir both in lamivudine-resistant patients and as initial treatment since it is both more potent and less likely to develop resistance.
First-line treatments currently used include PEG IFN, entecavir, and tenofovir, subject to patient and physician preference. Treatment initiation is guided by recommendations issued by The American Association for the Study of Liver Diseases (AASLD) and the European Association for the Study of the Liver (EASL) and is based on detectable viral levels, HBeAg positive or negative status, ALT levels, and in certain cases, family history of HCC and liver biopsy. In patients with compensated cirrhosis, treatment is recommended regardless of HBeAg status or ALT level, but recommendations differ regarding HBV DNA levels; AASLD recommends treating at DNA levels detectable above 2x10 IU/mL; EASL and WHO recommend treating when HBV DNA levels are detectable at any level. In patients with decompensated cirrhosis, treatment and evaluation for liver transplantation are recommended in all cases if HBV DNA is detectable. Currently, multidrug treatment is not recommended in treatment of chronic HBV as it is no more effective in the long term than individual treatment with entecavir or tenofovir.
Hepatitis D is difficult to treat, and effective treatments are lacking. Interferon alpha has proven effective at inhibiting viral activity but only on a temporary basis.
In assisted reproductive technology, sperm washing is not necessary for males with hepatitis B to prevent transmission, unless the female partner has not been effectively vaccinated. In females with hepatitis B, the risk of transmission from mother to child with IVF is no different from the risk in spontaneous conception.
Those at high risk of infection should be tested as there is effective treatment for those who have the disease. Groups that screening is recommended for include those who have not been vaccinated and one of the following: people from areas of the world where hepatitis B occurs in more than 2%, those with HIV, intravenous drug users, men who have sex with men, and those who live with someone with hepatitis B.
The vaccine for hepatitis B protects against hepatitis D virus because of the latter's dependence on the presence of hepatitis B virus for it to replicate.
Latest evidence suggests that Pegylated interferon alpha is effective in reducing the viral load and the effect of the disease during the time the drug is given, but the benefit generally stops if the drug is discontinued. The efficiency of the pegylated interferon treatment does not usually exceed ~20%.
The drug myrcludex B, which inhibits virus entry into hepatocytes, is in clinical trials .
A vaccine based on recombinant viral proteins was developed in the 1990s and tested in a high-risk population (in Nepal) in 2001. The vaccine appeared to be effective and safe, but development was stopped for lack of profitability, since hepatitis E is rare in developed countries. No hepatitis E vaccine is licensed for use in the United States.
Although other HEV vaccine trials have been successful, these vaccines have not yet been produced or made available to susceptible populations. The exception is China; after more than a year of scrutiny and inspection by China's State Food and Drug Administration (SFDA), a hepatitis E vaccine developed by Chinese scientists was available at the end of 2012. The vaccine—called HEV 239 by its developer Xiamen Innovax Biotech—was approved for prevention of hepatitis E in 2012 by the Chinese Ministry of Science and Technology, following a controlled trial on 100,000+ people from Jiangsu Province where none of those vaccinated became infected during a 12-month period, compared to 15 in the group given placebo. The first vaccine batches came out of Innovax' factory in late October 2012, to be sold to Chinese distributors.
Due to the lack of evidence, WHO did not make a recommendation regarding routine use of the HEV 239 vaccine. National authorities may however, decide to use the vaccine based on the local epidemiology.
In the United States in 1991, the mortality rate for hepatitis A was estimated to be 0.015% for the general population, but ranged up to 1.8 -2.1 % for those aged 50 and over which were hospitalized with icteric hepatitis. The risk of death from acute liver failure following HAV infection increases with age and when the person has underlying chronic liver disease.
Young children who are infected with hepatitis A typically have a milder form of the disease, usually lasting 1–3 weeks, whereas adults tend to experience a much more severe form of the disease.
There is no specific treatment for measles. Most people with uncomplicated measles will recover with rest and supportive treatment.
Patients who become sicker may be developing medical complications. Some people will develop pneumonia as a consequence of infection with the measles virus. Other complications include ear infections, bronchitis (either viral bronchitis or secondary bacterial bronchitis), and brain inflammation. Brain inflammation from measles has a mortality rate of 15%. While there is no specific treatment for brain inflammation from measles, antibiotics are required for bacterial pneumonia, sinusitis, and bronchitis that can follow measles.
All other treatment addresses symptoms, with ibuprofen or paracetamol to reduce fever and pain and, if required, a fast-acting medication to dilate the airways for cough. As for aspirin, some research has suggested a correlation between children who take aspirin and the development of Reye syndrome. Some research has shown aspirin may not be the only medication associated with Reye, and even antiemetics have been implicated. The link between aspirin use in children and Reye syndrome development is weak at best, if not actually nonexistent. Nevertheless, most health authorities still caution against the use of aspirin for any fevers in children under 16.
The use of vitamin A during treatment is recommended by the World Health Organization to decrease the risk of blindness. A systematic review of trials into its use found no significant reduction in overall mortality, but it did reduce mortality in children aged under two years.
It is unclear if zinc supplementation in children with measles affects outcomes.
The treatment of mumps is supportive. Symptoms may be relieved by the application of intermittent ice or heat to the affected neck/testicular area and by acetaminophen for pain relief. Warm saltwater gargles, soft foods, and extra fluids may also help relieve symptoms. Acetylsalicylic acid (aspirin) is not used to treat children due to the risk of Reye's syndrome.
There is no effective post-exposure recommendation to prevent secondary transmission, nor is the post-exposure use of vaccine or immunoglobulin effective.
Mumps is considered most contagious in the five days after the onset of symptoms, and isolation is recommended during this period. In someone who has been admitted to the hospital, standard and droplet precautions are needed. People who work in healthcare cannot work for five days.
There is no specific treatment for rubella; however, management is a matter of responding to symptoms to diminish discomfort. Treatment of newborn babies is focused on management of the complications. Congenital heart defects and cataracts can be corrected by direct surgery.
Management for ocular congenital rubella syndrome (CRS) is similar to that for age-related macular degeneration, including counseling, regular monitoring, and the provision of low vision devices, if required.
Infection in otherwise healthy adults tends to be more severe. Treatment with antiviral drugs (e.g. acyclovir or valacyclovir) is generally advised, as long as it is started within 24–48 hours from rash onset. Remedies to ease the symptoms of chickenpox in adults are basically the same as those used for children. Adults are more often prescribed antiviral medication, as it is effective in reducing the severity of the condition and the likelihood of developing complications. Antiviral medicines do not kill the virus but stop it from multiplying. Adults are advised to increase water intake to reduce dehydration and to relieve headaches. Painkillers such as paracetamol (acetaminophen) are recommended, as they are effective in relieving itching and other symptoms such as fever or pains. Antihistamines relieve itching and may be used in cases where the itching prevents sleep, because they also act as a sedative. As with children, antiviral medication is considered more useful for those adults who are more prone to develop complications. These include pregnant women or people who have a weakened immune system.
Sorivudine, a nucleoside analogue, has been reported to be effective in the treatment of primary varicella in healthy adults (case reports only), but large-scale clinical trials are still needed to demonstrate its efficacy.
After recovering from chickenpox, it is recommended by doctors that adults take one injection of VZV immune globulin and one injection of varicella vaccine or herpes zoster vaccine.
If aciclovir by mouth is started within 24 hours of rash onset, it decreases symptoms by one day but has no effect on complication rates. Use of acyclovir therefore is not currently recommended for individuals with normal immune function. Children younger than 12 years old and older than one month are not meant to receive antiviral drugs unless they have another medical condition which puts them at risk of developing complications.
Treatment of chickenpox in children is aimed at symptoms while the immune system deals with the virus. With children younger than 12 years, cutting nails and keeping them clean is an important part of treatment as they are more likely to scratch their blisters more deeply than adults.
Aspirin is highly contraindicated in children younger than 16 years, as it has been related to Reye syndrome.
There is no specific treatment for neonatal hepatitis. Vitamin supplements are usually prescribed and many infants are given phenobarbital, a drug used to control seizures, but which also stimulates the liver to excrete additional bile. Formulas containing more easily digested fats are also given to the infant.
Neonatal hepatitis caused by the hepatitis A virus also usually resolves itself within six months, but cases that are the result of infection with the hepatitis B or hepatitis C viruses most likely will result in chronic liver disease. Infants who develop cirrhosis ultimately will need a liver transplant.
There is currently no specific treatment for Zika virus infection. Care is supportive with treatment of pain, fever, and itching. Some authorities have recommended against using aspirin and other NSAIDs as these have been associated with hemorrhagic syndrome when used for other flaviviruses. Additionally, aspirin use is generally avoided in children when possible due to the risk of Reye syndrome.
Zika virus had been relatively little studied until the major outbreak in 2015, and no specific antiviral treatments are available as yet. Advice to pregnant women is to avoid any risk of infection so far as possible, as once infected there is little that can be done beyond supportive treatment.
Treatment is symptomatic and supportive. Children with hydrocephalus often need a ventriculoperitoneal shunt. Nucleoside analog ribavirin is used in some cases due to the inhibitory effect the agent has "in vitro" on arenaviruses. However, there is not sufficient evidence for efficacy in humans to support routine use. The only survivor of a transplant-associated LCMV infection was treated with ribavirin and simultaneous tapering of the immunosuppressive medications. Early and intravenous ribavirin treatment is required for maximal efficacy, and it can produce considerable side effects. Ribavirin has not been evaluated yet in controlled clinical trials.
Use of ribavirin during pregnancy is generally not recommended, as some studies indicate the possibility of teratogenic effects. If aseptic meningitis, encephalitis, or meningoencephalitis develops in consequence to LCMV, hospitalization and supportive treatment may be required. In some circumstances, anti-inflammatory drugs may also be considered. In general, mortality is less than one percent.
There is currently no specific therapy. Intravenous fluids and treatment of the hepatic encephalopathy may help. Increasing dietary levels of branched chain amino acids and feeding low protein diets can help signs of hepatic encephalopathy, which is often accomplished by feeding small amounts of grain and/or beet pulp, and removing high-protein feedstuffs such as alfalfa hay. Grazing on non-legume grass may be acceptable if it is late summer or fall, although the horse should only be permitted to eat in the evening so as to avoid photosensitization. Due to the risk of gastric impaction, stomach size should be monitored.
Sedation is minimized and used only to control behavior that could lead to injury of the animal and to allow therapeutic procedures, and should preferably involve a sedative other than a benzodiazepine. Stressing the animal should be avoided if at all possible. Plasma transfusions may be needed if spontaneous bleeding occurs, to replace clotting factors. Antibiotics are sometimes prescribed to prevent bacterial translocation from the intestines. Antioxidants such as vitamin E, B-complex vitamins, and acetylcysteine may be given. High blood ammonia is often treated with oral neomycin, often in conjunction with lactulose, metronidazole and probiotics, to decrease production and absorption of ammonia from the gastrointestinal tract.
There is no specific treatment for the condition.
Control may rely on boosting bird immunity, preventing group mixing and faecal spreading.
The most common preventative measure against mumps is a vaccination with a mumps vaccine, invented by American microbiologist Maurice Hilleman at Merck. The vaccine may be given separately or as part of the MMR immunization vaccine that also protects against measles and rubella. In the US, MMR is now being supplanted by MMRV, which adds protection against chickenpox (varicella, HHV3). The WHO (World Health Organization) recommends the use of mumps vaccines in all countries with well-functioning childhood vaccination programmes. In the United Kingdom it is routinely given to children at age 13 months with a booster at 3–5 years (preschool) This confers lifelong immunity. The American Academy of Pediatrics recommends the routine administration of MMR vaccine at ages 12–15 months and at 4–6 years. In some locations, the vaccine is given again between four and six years of age, or between 11 and 12 years of age if not previously given. The efficacy of the vaccine depends on the strain of the vaccine, but is usually around 80 percent. The Jeryl Lynn strain is most commonly used in developed countries but has been shown to have reduced efficacy in epidemic situations. The Leningrad-Zagreb strain commonly used in developing countries appears to have superior efficacy in epidemic situations.
Because of the outbreaks within college and university settings, many governments have established vaccination programs to prevent large-scale outbreaks. In Canada, provincial governments and the Public Health Agency of Canada have all participated in awareness campaigns to encourage students ranging from grade one to college and university to get vaccinated.
Some anti-vaccine activists protest against the administration of a vaccine against mumps, claiming that the attenuated vaccine strain is harmful, and/or that the wild disease is beneficial. There is no evidence whatsoever to support the claim that the wild disease is beneficial, or that the MMR vaccine is harmful. Claims have been made that the MMR vaccine is linked to autism and inflammatory bowel disease, including one study by Andrew Wakefield. The paper was discredited and retracted in 2010 and Wakefield was later stripped of his license after his work was found to be an "elaborate fraud". Also, subsequent studies indicate no link between vaccination with the MMR and autism. Since the dangers of the disease are well known, and the dangers of the vaccine are quite minimal, most doctors recommend vaccination.
The WHO, the American Academy of Pediatrics, the Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention, the American Academy of Family Physicians, the British Medical Association and the Royal Pharmaceutical Society of Great Britain currently recommend routine vaccination of children against mumps. The British Medical Association and Royal Pharmaceutical Society of Great Britain had previously recommended against general mumps vaccination, changing that recommendation in 1987.
Before the introduction of the mumps vaccine, the mumps virus was the leading cause of viral meningoencephalitis in the United States. However, encephalitis occurs rarely (less than two per 100,000). In one of the largest studies in the literature, the most common symptoms of mumps meningoencephalitis were found to be fever (97 percent), vomiting (94 percent) and headache (88.8 percent). The mumps vaccine was introduced into the United States in December 1967: since its introduction there has been a steady decrease in the incidence of mumps and mumps virus infection. There were 151,209 cases of mumps reported in 1968. From 2001 to 2008, the case average was only 265 per year, excluding an outbreak of less than 6000 cases in 2006 attributed largely to university contagion in young adults.
Viral hepatitis is liver inflammation due to a viral infection. It may present in acute (recent infection, relatively rapid onset) or chronic forms.
The most common causes of viral hepatitis are the five unrelated hepatotropic viruses hepatitis A, hepatitis B, hepatitis C, hepatitis D, and hepatitis E. In addition to the nominal hepatitis viruses, other viruses that can also cause liver inflammation include cytomegalovirus, Epstein–Barr virus, and yellow fever. Up to 1997 there has been also 52 cases of viral hepatitis caused by herpes simplex virus.
There is the opportunity to prevent or treat the most common types. Hepatitis A and hepatitis B can be prevented by vaccination. Effective treatments for hepatitis C are available but expensive.
In 2013 about 1.5 million people died from viral hepatitis. Most deaths are due to hepatitis B and hepatitis C. East Asia is the region of the world most affected.
Rubella infections are prevented by active immunisation programs using live attenuated virus vaccines. Two live attenuated virus vaccines, RA 27/3 and Cendehill strains, were effective in the prevention of adult disease. However their use in prepubertal females did not produce a significant fall in the overall incidence rate of CRS in the UK. Reductions were only achieved by immunisation of all children.
The vaccine is now usually given as part of the MMR vaccine. The WHO recommends the first dose be given at 12 to 18 months of age with a second dose at 36 months. Pregnant women are usually tested for immunity to rubella early on. Women found to be susceptible are not vaccinated until after the baby is born because the vaccine contains live virus.
The immunisation program has been quite successful. Cuba declared the disease eliminated in the 1990s, and in 2004 the Centers for Disease Control and Prevention announced that both the congenital and acquired forms of rubella had been eliminated from the United States.
Screening for rubella susceptibility by history of vaccination or by serology is recommended in the United States for all women of childbearing age at their first preconception counseling visit to reduce incidence of congenital rubella syndrome (CRS). It is recommended that all susceptible non-pregnant women of childbearing age should be offered rubella vaccination. Due to concerns about possible teratogenicity, use of MMR vaccine is not recommended during pregnancy. Instead, susceptible pregnant women should be vaccinated as soon as possible in the postpartum period.
Measles antibodies are transferred from mothers who have been vaccinated against measles or who have been previously infected with measles to their children while they are still in the womb. Such antibodies will usually give newborn infants some immunity against measles, but such antibodies are gradually lost over the course of the first six months of life. Infants under one year of age whose maternal anti-measles antibodies have disappeared become susceptible to infection with the measles virus.
In developed countries, it is recommended that children be immunized against measles at 12 months, generally as part of a three-part MMR vaccine (measles, mumps, and rubella). The vaccine is generally not given before this age because such infants respond inadequately to the vaccine due to an immature immune system. A second dose of the vaccine is usually given to children between the ages of four and five, to increase rates of immunity. Vaccination rates have been high enough to make measles relatively uncommon. Adverse reactions to vaccination are rare, with fever and pain at the injection site being the most common. Life-threatening adverse reactions occur in less than one per million vaccinations (<0.0001%).
In developing countries where measles is endemic, WHO doctors recommend two doses of vaccine be given at six and nine months of age. The vaccine should be given whether the child is HIV-infected or not. The vaccine is less effective in HIV-infected infants than in the general population, but early treatment with antiretroviral drugs can increase its effectiveness. Measles vaccination programs are often used to deliver other child health interventions, as well, such as bed nets to protect against malaria, antiparasite medicine and vitamin A supplements, and so contribute to the reduction of child deaths from other causes.
The Advisory Committee on Immunization Practices (ACIP) has long recommended that all adult international travelers who do not have positive evidence of previous measles immunity receive two doses of MMR vaccine before traveling. Despite this, a retrospective study of pre-travel consultations with prospective travelers at CDC-associated travel clinics found that of the 16% of adult travelers who were considered eligible for vaccination, only 47% underwent vaccination during the consultation; of these, patient refusal accounted for nearly half (48%), followed by healthcare provider decisions (28%) and barriers in the health system (24%).