Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main goal of treatment is to treat shock and preserve kidney function. Initially this is done through the administration of generous amounts of intravenous fluids, usually isotonic saline (0.9% weight per volume sodium chloride solution). In victims of crush syndrome, it is recommended to administer intravenous fluids even before they are extracted from collapsed structures. This will ensure sufficient circulating volume to deal with the muscle cell swelling (which typically commences when blood supply is restored), and to prevent the deposition of myoglobin in the kidneys. Amounts of 6 to 12 liters over 24 hours are recommended. The rate of fluid administration may be altered to achieve a high urine output (200–300 ml/h in adults), unless there are other reasons why this might lead to complications, such as a history of heart failure.
While many sources recommend additional intravenous agents to reduce damage to the kidney, most of the evidence supporting this practice comes from animal studies, and is inconsistent and conflicting. Mannitol acts by osmosis to enhance urine production and is thought to prevent myoglobin deposition in the kidney, but its efficacy has not been shown in studies and there is a risk of worsening kidney function. The addition of bicarbonate to the intravenous fluids may alleviate acidosis (high acid level of the blood) and make the urine more alkaline to prevent cast formation in the kidneys; evidence suggesting that bicarbonate has benefits above saline alone is limited, and it can worsen hypocalcemia by enhancing calcium and phosphate deposition in the tissues. If urine alkalinization is used, the pH of the urine is kept at 6.5 or above. Furosemide, a loop diuretic, is often used to ensure sufficient urine production, but evidence that this prevents kidney failure is lacking.
In the initial stages, electrolyte levels are often abnormal and require correction. High potassium levels can be life-threatening, and respond to increased urine production and renal replacement therapy (see below). Temporary measures include the administration of calcium to protect against cardiac complications, insulin or salbutamol to redistribute potassium into cells, and infusions of bicarbonate solution.
Calcium levels initially tend to be low, but as the situation improves calcium is released from where it has precipitated with phosphate, and vitamin D production resumes, leading to hypercalcemia (abnormally high calcium levels). This "overshoot" occurs in 20–30% of those people who have developed kidney failure.
Several medical treatments shift potassium ions from the bloodstream into the cellular compartment, thereby reducing the risk of complications. The effect of these measures tends to be short-lived, but may temporize the problem until potassium can be removed from the body.
- Insulin (e.g. intravenous injection of 10-15 units of regular insulin along with 50 ml of 50% dextrose to prevent the blood sugar from dropping too low) leads to a shift of potassium ions into cells, secondary to increased activity of the sodium-potassium ATPase. Its effects last a few hours, so it sometimes must be repeated while other measures are taken to suppress potassium levels more permanently. The insulin is usually given with an appropriate amount of glucose to prevent hypoglycemia following the insulin administration.
- Salbutamol (albuterol), a β-selective catecholamine, is administered by nebulizer (e.g. 10–20 mg). This medication also lowers blood levels of K by promoting its movement into cells.
- Sodium bicarbonate may be used with the above measures if it is believed the person has metabolic acidosis.
Severe cases require hemodialysis or hemofiltration, which are the most rapid methods of removing potassium from the body. These are typically used if the underlying cause cannot be corrected swiftly while temporizing measures are instituted or there is no response to these measures.
Potassium can bind to agents in the gastrointestinal tract. Sodium polystyrene sulfonate with sorbitol (Kayexalate) has been approved for this use and can be given by mouth or rectally. However, careful clinical trials to demonstrate the effectiveness of sodium polystyrene are lacking, and use of sodium polystyrene sulfonate, particularly if with high sorbitol content, is uncommonly but convincingly associated with colonic necrosis. There are no systematic studies (>6 months) looking at the long-term safety of this medication. Another medication by the name of patiromer was approved in 2015.
Loop diuretics (furosemide, bumetanide, torasemide) and thiazide diuretics (e.g., chlorthalidone, hydrochlorothiazide, or chlorothiazide) can increase kidney potassium excretion in people with intact kidney function.
Fludrocortisone, a synthetic mineralocorticoid, can also increase potassium excretion by the kidney in patients with functioning kidneys. Trials of fludrocortisone in patients on dialysis have shown it to be ineffective.
Patiromer is a selective sorbent that is taken by mouth and works by binding free potassium ions in the gastrointestinal tract and releasing calcium ions for exchange, thus lowering the amount of potassium available for absorption into the bloodstream and increasing the amount that is excreted via the feces. The net effect is a reduction of potassium levels in the blood serum.
Hospitalization and IV hydration should be the first step in any patient suspected of having myoglobinuria or rhabdomyolysis. The goal is to induce a brisk diuresis to prevent myoglobin precipitation and deposition, which can cause acute kidney injury. Mannitol can be added to assist with diuresis. Adding sodium bicarbonate to the IV fluids will cause alkalinzation of the urine, believed to reduce the breakdown of myoglobin into its nephrotoxic metabolites, thus preventing renal damage. Often, IV normal saline is all that is needed to induce diuresis and alkalinize the urine.
The clinician must protect the patient against hypotension, renal failure, acidosis, hyperkalemia and hypocalcemia. Admission to an intensive care unit, preferably one experienced in trauma medicine, may be appropriate; even well-seeming patients need observation. Treat open wounds as surgically appropriate, with debridement, antibiotics and tetanus toxoid; apply ice to injured areas.
Intravenous hydration of up to 1.5 L/hour should continue to prevent hypotension. A urinary output of at least 300 ml/hour should be maintained with IV fluids and mannitol, and hemodialysis considered if this amount of diuresis is not achieved. Use intravenous sodium bicarbonate to keep the urine pH at 6.5 or greater, to prevent myoglobin and uric acid deposition in kidneys.
To prevent hyperkalemia/hypocalcemia, consider the following adult doses:
- calcium gluconate 10% 10ml or calcium chloride 10% 5 ml IV over 2 minutes
- sodium bicarbonate 1 meq/kg IV slow push
- regular insulin 5–10 U
- 50% glucose 1–2 ampules IV bolus
- kayexalate 25–50 g with sorbitol 20% 100 ml by mouth or rectum.
Even so, cardiac arrhythmias may develop; electrocardiographic monitoring is advised, and specific treatment begun promptly.
The myriad causes of intrinsic AKI require specific therapies. For example, intrinsic AKI due to vasculitis or glomerulonephritis may respond to steroid medication, cyclophosphamide, and (in some cases) plasma exchange. Toxin-induced prerenal AKI often responds to discontinuation of the offending agent, such as ACE inhibitors, ARB antagonists, aminoglycosides, penicillins, NSAIDs, or paracetamol.
The use of diuretics such as furosemide, is widespread and sometimes convenient in improving fluid overload. It is not associated with higher mortality (risk of death), nor with any reduced mortality or length of intensive care unit or hospital stay.
Metabolic acidosis, hyperkalemia, and pulmonary edema may require medical treatment with sodium bicarbonate, antihyperkalemic measures, and diuretics.
Lack of improvement with fluid resuscitation, therapy-resistant hyperkalemia, metabolic acidosis, or fluid overload may necessitate artificial support in the form of dialysis or hemofiltration.
As with any supplements and drugs, it is best to confer with a veterinarian as to the recommended dosages. Some drugs are not allowed in competition and may need to be withheld a few days before.
Adding potassium and salt to the diet may be beneficial to horses that suffer from recurrent bouts of ER. Horses in hard training may need a vitamin E supplement, as their requirements are higher than horses in more moderate work. The horse may also be deficient in selenium, and need a feed in supplement. Selenium can be dangerous if overfed, so it is best to have a blood test to confirm that the horse is in need of supplemental selenium.
Thyroid hormone supplementation is often beneficial for horses with low thyroid activity (only do so if the horse has been diagnosed with hypothyroidism).
Other drugs that have been used with success include phenytoin, dantrolene, and dimetyl glycine.
Bicarbonate and NSAIDs are of no use in preventing ER.
Treatment including addressing the cause, such as improving the diet, treating diarrhea, or stopping an offending medication. People without a significant source of potassium loss and who show no symptoms of hypokalemia may not require treatment.
Mild hypokalemia (>3.0 meq/l) may be treated with oral potassium chloride supplements (Klor-Con, Sando-K, Slow-K). As this is often part of a poor nutritional intake, potassium-containing foods may be recommended, such as leafy green vegetables, avocados, tomatoes, coconut water, citrus fruits, oranges, or bananas. Both dietary and pharmaceutical supplements are used for people taking diuretic medications.
Severe hypokalemia (<3.0 meq/l) may require intravenous supplementation. Typically, a saline solution is used, with 20–40 meq/l KCl per liter over 3–4 hours. Giving IV potassium at faster rates (20–25 meq/hr) may predispose to ventricular tachycardias and requires intensive monitoring. A generally safe rate is 10 meq/hr. Even in severe hypokalemia, oral supplementation is preferred given its safety profile. Sustained-release formulations should be avoided in acute settings.
Difficult or resistant cases of hypokalemia may be amenable to a potassium-sparing diuretic, such as amiloride, triamterene, spironolactone, or eplerenone. Concomitant hypomagnesemia will inhibit potassium replacement, as magnesium is a cofactor for potassium uptake.
When replacing potassium intravenously, infusion by a central line is encouraged to avoid the frequent occurrence of a burning sensation at the site of a peripheral infusion, or the rare occurrence of damage to the vein. When peripheral infusions are necessary, the burning can be reduced by diluting the potassium in larger amounts of fluid, or mixing 3 ml of 1% lidocaine to each 10 meq of KCl per 50 ml of fluid. The practice of adding lidocaine, however, raises the likelihood of serious medical errors.
A horse may need fluids, especially if his urine is colored, the horse is receiving NSAIDs, or if he is dehydrated. Fluids will increase the production of urine that will in turn help flush out the excess, and potentially damaging, myoglobin from the kidneys and will reduce NSAID-produced kidney damage. Fluids should be administered until the urine is clear, which usually takes from a few hours to a few days.
Vasodilators, such as acepromazine, can help improve blood flow to the muscles. However, the owner should only give acepromazine if it is prescribed by the horse's veterinarian, as it can lower the animal's blood pressure and can cause collapse in a severely dehydrated horse. The human drug dantrolene is sometimes given to alleviate the muscle spasms and prevent further degeneration of muscle tissue.
Vitamin E is an anti-oxidant, and so may help prevent further cell degeneration in the affected muscles. However, vitamin E products must be used with caution if they also contain selenium.
Bicarbonate will not help offset any lactic acid in the bloodstream, as lactic acid generally only accumulates in the affected muscles.
Except to get a horse to his stall, a horse showing signs of severe ER should not be moved until he is comfortable enough to do so eagerly. This may take several days. After this point, it is important to either hand-walk the horse a few times each day, or provide him with a few hours of turnout in a pasture or paddock.
As mentioned, permissive hypotension is unwise. Especially if the crushing weight is on the patient more than 4 hours, but often if it persists more than one hour, careful fluid overload is wise, as well as the administration of intravenous sodium bicarbonate. The San Francisco emergency services protocol calls for a basic adult dose of a 2 L bolus of normal saline followed by 500 ml/h, limited for "pediatric patients and patients with history of cardiac or renal dysfunction."
If the patient cannot be fluid loaded, this may be an indication for a tourniquet to be applied.
Potassium replacement is often required as the metabolic problems are corrected. It is generally replaced at a rate 10 mEq per hour as long as there is adequate urinary output.
A pH under 7.1 is an emergency, due to the risk of cardiac arrhythmias, and may warrant treatment with intravenous bicarbonate. Bicarbonate is given at 50-100 mmol at a time under scrupulous monitoring of the arterial blood gas readings. This intervention, however, has some serious complications in lactic acidosis, and in those cases, should be used with great care.
If the acidosis is particularly severe and/or intoxication may be present, consultation with the nephrology team is considered useful, as dialysis may clear both the intoxication and the acidosis.
Treatment of HHS begins with reestablishing tissue perfusion using intravenous fluids. People with HHS can be dehydrated by 8 to 12 liters. Attempts to correct this usually take place over 24 hours with initial rates of normal saline often in the range of 1 L/h for the first few hours or until the condition stabilizes.
Treatment is first targeted at the specific metabolic disorder.
Acute kidney failure prior to chemotherapy. Since the major cause of acute kidney failure in this setting is uric acid build-up, therapy consists of rasburicase to wash out excessive uric acid crystals as well as a loop diuretic and fluids. Sodium bicarbonate should not be given at this time. If the patient does not respond, hemodialysis may be instituted, which is very efficient in removing uric acid, with plasma uric acid levels falling about 50% with each six-hour treatment.
Acute kidney failure after chemotherapy. The major cause of acute kidney failure in this setting is hyperphosphatemia, and the main therapeutic means is hemodialysis. Forms of hemodialysis used include continuous arteriovenous hemodialysis (CAVHD), continuous venovenous hemofiltration (CVVH), or continuous venovenous hemodialysis (CVVHD).
People about to receive chemotherapy for a cancer with a high cell turnover rate, especially lymphomas and leukemias, should receive prophylactic oral or IV allopurinol (a xanthine oxidase inhibitor, which inhibits uric acid production) as well as adequate IV hydration to maintain high urine output (> 2.5 L/day). Allopurinol mechanically blocks rasburicase's operation to solubilize.
Rasburicase is an alternative to allopurinol and is reserved for people who are high-risk in developing TLS. It is a synthetic urate oxidase enzyme and acts by degrading uric acid. However, it's not clear if it results in any important benefits as of 2014.
Alkalization of the urine with acetazolamide or sodium bicarbonate is controversial. Routine alkalization of urine above pH of 7.0 is not recommended. Alkalization is also not required if uricase is used.
The second stage features the reabsorption of the initially extravasated fluid and albumin from the tissues, and it usually lasts 1 to 2 days. Intravascular fluid overload leads to polyuria and can cause flash pulmonary edema and cardiac arrest, with possibly fatal consequences. Death from SCLS typically occurs during this recruitment phase because of pulmonary edema arising from excessive intravenous fluid administration during the earlier leak phase. The severity of the problem depends on to the quantity of fluid supplied in the initial phase, the damage that may have been sustained by the kidneys, and the promptness with which diuretics are administered to help the patient discharge the accumulated fluids quickly. A recent study of 59 acute episodes occurring in 37 hospitalized SCLS patients concluded that high-volume fluid therapy was independently associated with poorer clinical outcomes, and that the main complications of SCLS episodes were recovery-phase pulmonary edema (24%), cardiac arrhythmia (24%), compartment syndrome (20%), and acquired infections (19%).
The prevention of episodes of SCLS has involved two approaches. The first has long been identified with the Mayo Clinic, and it recommended treatment with beta agonists such as terbutaline, phosphodiesterase-inhibitor theophylline, and leukotriene-receptor antagonists montelukast sodium.
The rationale for use of these drugs was their ability to increase intracellular cyclic AMP (adenosine monophosphate) levels, which might counteract inflammatory signaling pathways that induce endothelial permeability. It was the standard of care until the early 2000s, but was sidelined afterwards because patients frequently experienced renewed episodes of SCLS, and because these drugs were poorly tolerated due to their unpleasant side effects.
The second, more recent approach pioneered in France during the last decade (early 2000s) involves monthly intravenous infusions of immunoglobulins (IVIG), with an initial dose of 2 gr/kg/month of body weight, which has proven very successful as per abundant case-report evidence from around the world.
IVIG has long been used for the treatment of autoimmune and MGUS-associated syndromes, because of its potential immunomodulatory and anticytokine properties. The precise mechanism of action of IVIG in patients with SCLS is unknown, but it is likely that it neutralizes their proinflammatory cytokines that provoke endothelial dysfunction. A recent review of clinical experience with 69 mostly European SCLS patients found that preventive treatment with IVIG was the strongest factor associated with their survival, such that an IVIG therapy should be the first-line preventive agent for SCLS patients. According to a recent NIH survey of patient experience, IVIG prophylaxis is associated with a dramatic reduction in the occurrence of SCLS episodes in most patients, with minimal side effects, such that it may be considered as frontline therapy for those with a clear-cut diagnosis of SCLS and a history of recurrent episodes.
Management of this condition includes|:
- Intravenous calcium gluconate 10% can be administered, or if the hypocalcaemia is severe, calcium chloride is given instead. This is only appropriate if the hypocalcemia is acute and has occurred over a relatively short time frame. But if the hypocalcemia has been severe and chronic, then this regimen can be fatal, because there is a degree of acclimatization that occurs. The neuromuscular excitability, cardiac electrical instability, and associated symptoms are then not cured or relieved by prompt administration of corrective doses of calcium, but rather exacerbated. Such rapid administration of calcium would result in effective over correction – symptoms of hypercalcemia would follow.
- However, in either circumstance, maintenance doses of both calcium and vitamin-D (often as 1,25-(OH)-D, i.e. calcitriol) are often necessary to prevent further decline
In the acute phase of an attack, administration of potassium will quickly restore muscle strength and prevent complications. However, caution is advised as the total amount of potassium in the body is not decreased, and it is possible for potassium levels to overshoot ("rebound hyperkalemia"); slow infusions of potassium chloride are therefore recommended while other treatment is commenced.
The effects of excess thyroid hormone typically respond to the administration of a non-selective beta blocker, such as propranolol (as most of the symptoms are driven by increased levels of adrenaline and its effect on the β-adrenergic receptors). Subsequent attacks may be prevented by avoiding known precipitants, such as high salt or carbohydrate intake, until the thyroid disease has been adequately treated.
Treatment of the thyroid disease usually leads to resolution of the paralytic attacks. Depending on the nature of the disease, the treatment may consist of thyrostatics (drugs that reduce production of thyroid hormone), radioiodine, or occasionally thyroid surgery.
The current treatment of choice is the intravenous administration of dantrolene, the only known antidote, discontinuation of triggering agents, and supportive therapy directed at correcting hyperthermia, acidosis, and organ dysfunction. Treatment must be instituted rapidly on clinical suspicion of the onset of malignant hyperthermia.
Dantrolene is a muscle relaxant that appears to work directly on the ryanodine receptor to prevent the release of calcium. After the widespread introduction of treatment with dantrolene, the mortality of malignant hyperthermia fell from 80% in the 1960s to less than 5%. Dantrolene remains the only drug known to be effective in the treatment of MH. It is recommended that each hospital keeps a minimum stock of 36 dantrolene vials (720 mg) sufficient for a 70-kg person.
For most horses, diet has a significant impact on the degree of clinical signs. PSSM horses fed diets high in nonstructural carbohydrates (NSC), which stimulate insulin secretion, have been shown to have increased severity of rhabdomyolysis with exercise. Current recommendations for horses with PSSM include a low-starch, high-fat diet. Low-starch diets produce low blood glucose and insulin levels after eating, which may reduce the amount of glucose taken up by the muscle cells. High fat diets increase free fatty acid concentrations in the blood, which may promote the use of fat for energy (via free fatty acid oxidation) over glucose metabolism. Horses with the most severe clinical signs often show the greatest improvement on the diet.
Dietary recommendations usually include a combination of calorie restriction, reduction of daily NSC content, and an increase in dietary fat. Diet recommendations need to be balanced with the animal's body condition score and exercise level, as it may be beneficial to wait on increasing dietary fat after an obese animal has lost weight. The diet should have <10% of digestible energy coming from NSC, and 15-20% of daily digestible energy coming from fat.
People who received earlier referrals to a nephrology specialist, meaning a longer time before they had to start dialysis, had a shorter initial hospitalization and reduced risk of death after the start of dialysis. The authors highlighted the resulting importance of early referral in slowing progression of chronic kidney disease. Other methods of reducing disease progression include minimizing exposure to nephrotoxins such as NSAIDS and intravenous contrast.
Supervised exercise programs have been shown in small studies to improve exercise capacity by several measures.
Oral sucrose treatment (for example a sports drink with 75 grams of sucrose in 660 ml.) taken 30 minutes prior to exercise has been shown to help improve exercise tolerance including a lower heart rate and lower perceived level of exertion compared with placebo.