Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Barrage laser is at times done prophylactically around a hole or tear associated with lattice degeneration in an eye at risk of developing a retinal detachment. It is not known if surgical interventions such as laser photocoagulation or cryotherapy is effective in preventing retinal detachment in patients with lattice degeneration or "asymptomatic" retinal detachment. Laser photocoagulation has been shown to reduce risks of retinal detachment in "symptomatic" lattice degeneration. There are documented cases wherein retina detached from areas which were otherwise healthy despite being treated previously with laser.
Currently, there is no treatment for the disease. However, ophthalmologists recommend wearing sunglasses and hats outdoors and blue-light blocking glasses when exposed to artificial light sources, such as screens and lights. Tobacco smoke and second-hand smoke should be avoided. Animal studies also show that high doses of vitamin A can be detrimental by building up more lipofuscin toxin. Dietary non-supplemental vitamin A intake may not further the disease progression.
Clinical trials are being conducted with promising early results. The trials may one day lead to treatments that might halt, and possibly even reverse, the effects of Stargardt disease using stem cell therapy, gene therapy, or pharmacotherapy.
The Argus retinal prosthesis, an electronic retinal implant, was successfully fitted to a 67-year-old woman in Italy at the Careggi Hospital in 2016. The patient had a very advanced stage of Stargardt’s disease, and a total absence of peripheral and central visual fields.
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
Optic pits themselves do not need to be treated. However, patients should follow up with their eye care professional annually or even sooner if the patient notices any visual loss whatsoever. Treatment of PVD or serous retinal detachment will be necessary if either develops in a patient with an optic pit.
To date, there is no known effective treatment for the non-proliferative form of macular telangiectasia type 2.
Treatment options are limited. No treatment has to date been shown to prevent progression. The variable course of progression of the disease makes it difficult to assess the efficacy of treatments. Retinal laser photocoagulation is not helpful. In fact, laser therapy may actually enhance vessel ectasia and promote intraretinal fibrosis in these individuals. It is hoped that a better understanding of the pathogenesis of the disease may lead to better treatments.
The use of vascular endothelial growth factor (VEGF) inhibitors, which have proven so successful in treating age-related macular degeneration, have not proven to be effective in non-proliferative MacTel type 2. Ranibizumab reduces the vascular leak seen on angiography, although microperimetry suggests that neural atrophy may still proceed in treated eyes.In proliferative stages (neovascularisation), treatment with Anti-VEGF can be helpful.
CNTF is believed to have neuroprotective properties and could thus be able to slow down the progression of MacTel type 2. It has been shown to be safe to use in MacTel patients in a phase 1 safety trial.
The progressive nature of and lack of a definitive cure for retinitis pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in retinitis pigmentosa prove promising for the future.
Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aids and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
The most crucial aspect of managing patients with macular telangiectasia is recognition of the clinical signs. This condition is relatively uncommon: hence, many practitioners may not be familiar with or experienced in diagnosing the disorder. MacTel must be part of the differential in any case of idiopathic paramacular hemorrhage, vasculopathy, macular edema or focal pigment hypertrophy, especially in those patients without a history of retinopathy or contributory systemic disease.
Treatment options for macular telangiectasia type 1 include laser photocoagulation, intra-vitreal injections of steroids, or anti-vascular endothelial growth factor (anti-VEGF) agents. Photocoagulation was recommended by Gass and remains to date the mainstay of treatment. It seems to be successful in causing resolution of exudation and VA improvement or stabilization in selected patients. Photocoagulation should be used sparingly to reduce the chance of producing a symptomatic paracentral scotoma and metamorphopsia. Small burns (100–200 μm) of moderate intensity in a grid-pattern and on multiple occasions, if necessary, are recommended. It is unnecessary to destroy every dilated capillary, and, particularly during the initial session of photocoagulation, those on the edge of the capillary-free zone should be avoided.
Intravitreal injections of triamcinolone acetonide (IVTA) which have proved to be beneficial in the treatment of macular edema by their anti-inflammatory effect, their downregulation of VEGF production, and stabilization of the blood retinal barrier were reported anecdotally in the management of macular telangiectasia type 1. In two case reports, IVTA of 4 mg allowed a transitory reduction of retinal edema, with variable or no increase in VA. As expected with all IVTA injections, the edema recurred within 3–6 months, and no permanent improvement could be shown.14,15 In general, the effect of IVTA is short-lived and complications, mainly increased intraocular pressure and cataract, limit its use.
Indocyanine green angiography-guided laser photocoagulation directed at the leaky microaneurysms and vessels combined with sub-Tenon’s capsule injection of triamcinolone acetonide has also been reported in a limited number of patients with macular telangiectasia type 1 with improvement or stabilization of vision after a mean follow-up of 10 months.16 Further studies are needed to assess the efficacy of this treatment modality.
Recently, intravitreal injections of anti-VEGF agents, namely bevacizumab, a humanized monoclonal antibody targeted against pro-angiogenic, circulatory VEGF, and ranibizumab, a FDA-approved monoclonal antibody fragment that targets all VEGF-A isoforms, have shown improved visual outcome and reduced leakage in macular edema form diabetes and retinal venous occlusions. In one reported patient with macular telangiectasia type 1, a single intravitreal bevacizumab injection resulted in a marked increase in VA from 20/50 to 20/20, with significant and sustained decrease in both leakage on FA and cystoid macular edema on OCT up to 12 months. It is likely that patients with macular telangiectasia type 1 with pronounced macular edema from leaky telangiectasis may benefit functionally and morphologically from intravitreal anti-VEGF injections, but this warrants further studies.
Today, laser photocoagulation remains mostly effective, but the optimal treatment of macular telangiectasia type 1 is questioned, and larger series comparing different treatment modalities seem warranted. The rarity of the disease however, makes it difficult to assess in a controlled randomized manner.
However, these treatment modalities should be considered only in cases of marked and rapid vision loss secondary to macular edema or CNV. Otherwise, a conservative approach is recommended, since many of these patients will stabilize without intervention.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
Cryotherapy (freezing) or laser photocoagulation are occasionally used alone to wall off a small area of retinal detachment so that the detachment does not spread.
In terms of the treatment of cytomegalovirus retinitis, oral valganciclovir, intravenous ganciclovir, IV foscarnet, and IV cidofovir are all efficient in the treatment of this condition. Also intravitreal injections, an injection of medicine into the vitreous near the retina, of foscarnet in concomitance with oral valganciclovir can be used for treatment as well.
Often individuals with CMV retinitis will need surgery for either retinal detachment or intravitreal instillation of ganciclovir. Retinal detachment occurs in up to 29% of affected eyes, repair being most effective with endolaser and silicone oil endotamponade.Intravitreal ganciclovir implant has the benefit of less systemic toxicity. An adverse effect of this is retinal detachment (and vitreous hemorrhage), also there is no systemic beneficial effect for cytomegalovirus organ disease.
While nothing currently can be done to stop or reverse the retinal degeneration, there are steps that can be taken to slow the rate of vision loss. UV-blocking sunglasses for outdoors, appropriate dietary intake of fresh fruit and leafy green vegetables, antioxidant vitamin supplements, and regular intake of dietary omega-3 very-long-chain fatty acids are all recommended.
One study found that a dietary supplement of lutein increases macular pigment levels in patients with choroideremia. Over a long period of time, these elevated levels of pigmentation could slow retinal degeneration. Additional interventions that may be needed include surgical correction of retinal detachment and cataracts, low vision services, and counseling to help cope with depression, loss of independence, and anxiety over job loss.
Scleral buckle surgery is an established treatment in which the eye surgeon sews one or more silicone bands (or tyres) to the sclera (the white outer coat of the eyeball). The bands push the wall of the eye inward against the retinal hole, closing the break or reducing fluid flow through it and reducing the effect of vitreous traction thereby allowing the retina to re-attach. Cryotherapy (freezing) is applied around retinal breaks prior to placing the buckle. Often subretinal fluid is drained as part of the buckling procedure. The buckle remains in situ. The most common side effect of a scleral operation is myopic shift. That is, the operated eye will be more short sighted after the operation. Radial scleral buckle is indicated for U-shaped tears or Fishmouth tears, and posterior breaks. Circumferential scleral buckle is indicated for multiple breaks, anterior breaks and wide breaks. Encircling buckles are indicated for breaks covering more than 2 quadrants of retinal area, lattice degeneration located on more than 2 quadrant of retinal area, undetectable breaks, and proliferative vitreous retinopathy.
Gene therapy is currently not a treatment option, however human clinical trials for both choroideremia and Leber's congenital amaurosis (LCA) have produced somewhat promising results.
Clinical trials of gene therapy for patients with LCA began in 2008 at three different sites. In general, these studies found the therapy to be safe, somewhat effective, and promising as a future treatment for similar retinal diseases.
In 2011, the first gene therapy treatment for choroideremia was administered. The surgery was performed by Robert MacLaren, Professor of Ophthalmology at the University of Oxford and leader of the Clinical Ophthalmology Research Group at the Nuffield Laboratory of Ophthalmology (NLO).
In the study, 2 doses of the AAV.REP1 vector were injected subretinally in 12 patients with choroideremia.
There study had 2 objectives:
- to assess the safety and tolerability of the AAV.REP1 vector
- to observe the therapeutic benefit, or slowing of the retinal degeneration, of the gene therapy during the study and at a 24-month post-treatment time point
Despite retinal detachment caused by the injection, the study observed initial improved rod and cone function, warranting further study.
In 2016, researchers were optimistic that the positive results of 32 choroideremia patients treated over four and a half years with gene therapy in four countries could be long-lasting.
Retinal haemorrhages, especially mild ones not associated with chronic disease, will normally resorb without treatment. Laser surgery is a treatment option which uses a laser beam to seal off damaged blood vessels in the retina. Anti-vascular endothelial growth factor (VEGF) drugs like Avastin and Lucentis have also been shown to repair retinal haemorrhaging in diabetic patients and patients with haemorrhages associated with new vessel growth.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
The treatment method used depends on the cause of the hemorrhage. In most cases, the patient is advised to rest with the head elevated 30–45°, and sometimes to put patches over the eyes to limit movement prior to treatment in order to allow the blood to settle. The patient is also advised to avoid taking medications that cause blood thinning (such as aspirin or similar medications).
The goal of the treatment is to fix the cause of the hemorrhage as quickly as possible. Retinal tears are closed by Laser treatment or cryotherapy, and detached retinas are reattached surgically.
Even after treatment, it can take months for the body to clear all of the blood from the vitreous. In cases of vitreous hemorrhage due to detached retina,long-standing vitreous hemorrhage with a duration of more than 2–3 months, or cases associated with rubeosis iridis or glaucoma, a vitrectomy may be necessary to remove the standing blood in the vitreous.
Surgeons can remove or peel the membrane through the sclera and improve vision by 2 or more Snellen lines. Usually the vitreous is replaced at the same time with clear (BSS) fluid, in a vitrectomy. Surgery is not usually recommended unless the distortions are severe enough to interfere with daily living, since there are the usual hazards of surgery, infections, and a possibility of retinal detachment. More common complications are high intraocular pressure, bleeding in the eye, and cataracts, which are the most frequent complication of vitrectomy surgery. Many patients will develop a cataract within the first few years after surgery. In fact, the visual distortions and diplopia created by cataracts may sometimes be confused with epiretinal membrane.
Retinoschisis involving the central part of the retina secondary to an optic disc pit was erroneously considered to be a serous retinal detachment until correctly described by Lincoff as retinoschisis. Significant visual loss may occur and following a period of observation for spontaneous resolution, treatment with temporal peripapillary laser photocoagulation followed by vitrectomy and gas injection followed by face-down positioning is very effective in treating this condition.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
Treatment is based on the cause of the retinopathy and may include laser therapy to the retina. Laser photocoagulation therapy has been the standard treatment for many types of retinopathy. Evidence show that laser therapy is generally safe and improves visual symptoms in sickle cell and diabetic retinopathy. In recent years targeting the pathway controlling vessel growth or angiogenesis has been promising. Vascular endothelial growth factor (VEGF) seems to play a vital role in promoting neovascularization. Using anti-VEGF drugs (antibodies to sequester the growth factor), research have shown significant reduction in the extent of vessel outgrowth. Evidence supports the use of anti-VEGF antibodies, such as bevacizumab or pegaptanib, seems to improve outcomes when used in conjunction with laser therapy to treat retinopathy of prematurity. The evidence is poorer for treatment of diabetic retinopathy. Use of anti-VEGF drugs did not appear to improve outcomes when compared to standard laser therapy for diabetic retinopathy.
Several options exist for the treatment of BRVO. These treatments aim for the two of the most significant complications of BRVO, namely macular edema and neovascularization.
- Systemic treatment with oral Aspirin, subcutaneous Heparin, or intravenous thrombolysis have not been shown to be effective treatments for CRVO and for BRVO no reliable clinical trial has been published.
- Laser treatment of the macular area to reduce macular edema is indicated in patients who have 20/40 or worse vision and did not spontaneously improve for at least 3 months (to permit the maximum spontaneous resolution) after the development of the vein occlusion. It is typically administered with the argon laser and is focused on edematous retina within the arcades drained by the obstructed vein and avoiding the foveal avascular zone. Leaking microvascular abnormalities may be treated directly, but prominent collateral vessels should be avoided.
- The second indication of laser treatment is in case of neovascularization. Retinal photocoagulation is applied to the involved retina to cover the entire involved segment, extending from the arcade out to the periphery. Ischemia alone is not an indication for treatment provided that follow-up could be maintained.
- Preservative-free, nondispersive Triamcinolone acetonide in 1 or 4 mg dosage may be injected into the vitreous to treat macular edema but has complications including elevated intraocular pressure and development of cataract. Triamcinolone injection is shown to have similar effect on visual acuity when compared with standard care (Laser therapy), However, the rates of elevated intraocular pressure and cataract formation is much higher with the triamcinolone injection, especially the higher dosage. Intravitreal injection of Dexamethasone implant (Ozurdex; 700,350 μg) is being studied, its effect may last for 180 days. The injection may be repeated however with less pronounced effect. Although the implant was designed to cause less complications, pressure rise and cataract formation is noted with this treatment too.
- Anti-VEGF drugs such as Bevacizumab (Avastin; 1.25 -2.5 mg in 0.05ml) and Ranibizumab (lucentis) injections are being used and investigated. Intravitreal anti-VEGFs have a low incidence of adverse side effects compared with intravitreal corticosteroids, but are currently short acting requiring frequent injections. Anti-VEGF injection may be used for macular edema or neovascularization. The mechanism of action and duration of anti-VEGF effect on macular edema is currently unknown. The intraocular levels of VEGF are increased in eyes with macular edema secondary to BRVO and the elevated VEGF levels are correlated to the degree and severity of the areas of capillary nonperfusion and macular edema.
- Surgery is employed occasionally for longstanding vitreous hemorrhage and other serious complications such as epiretinal membrane and retinal detachment.
- Arteriovenous sheathotomy has been reported in small, uncontrolled series of patients with BRVO. BRVO typically occurs at arteriovenous crossings, where the artery and vein share a common adventitial sheath. In arteriovenous sheathotomy an incision is made in the adventitial sheath adjacent to the arteriovenous crossing and is extended along the membrane that holds the blood vessels in position to the point where they cross, the overlying artery is then separated from the vein.
There is no good evidence for any preventive actions, since it appears this is a natural response to aging changes in the vitreous. Posterior vitreous detachment (PVD) has been estimated to occur in over 75 per cent of the population over age 65, that PVD is essentially a harmless condition (although with some disturbing symptoms), and that it does not normally threaten sight. However, since epiretinal membrane appears to be a protective response to PVD, where inflammation, exudative fluid, and scar tissue is formed, it is possible that NSAIDs may reduce the inflammation response. Usually there are flashing light experiences and the emergence of floaters in the eye that herald changes in the vitreous before the epiretinal membrane forms g
Therapy is not required or indicated in posterior vitreous detachment, unless there are associated retinal tears, which need to be repaired. In absence of retinal tears, the usual progress is that the vitreous humor will continue to age and liquefy and floaters will usually become less and less noticeable, and eventually most symptoms will completely disappear. Prompt examination of patients experiencing vitreous humor floaters combined with expeditious treatment of any retinal tears has been suggested as the most effective means of preventing certain types of retinal detachments.