Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Induction chemotherapy is the treatment adapted for shrinking the tonsil tumor. It is given prior to other treatments, hence, the term induction. After the therapy is completed, the patient is asked to rest and is evaluated over a period of time. Then the patient is given chemo-radiation therapy (a combination of chemotherapy and radiation) to completely destroy the tumor cells.
Early radio-sensitive tumors are treated by radiotherapy along with irradiation of cervical nodes. The radiation uses high-energy X-rays, electron beams, or radioactive isotopes to destroy cancer cells.
Radiotherapy is commonly used to treat Merkel-cell cancers. The radiotherapy fields used are usually very large so as to cover sufficient areas of skin. This is necessary because of MCC's aggressive local and regional metastatic behavior.
Adjuvant radiotherapy has been shown to be effective in reducing the rates of recurrence and in increasing the survival of patients with MCC. Patients who present with no distant metastases and a negative sentinel lymph node biopsy have a very good prognosis when treated with both surgery and radiotherapy (approximately 90% survival rate at five years).
Metastatic MCC may respond to treatment with chemotherapy and/or radiation, but current multimodal therapies are usually not curative. Intensive treatment can be effective in shrinking the tumor and improving operability when tumors are too large to be removed or located in a place where removal would be difficult or dangerous, or in palliation of signs and symptoms caused by metastatic tumors.
As with the radiotherapy data, most of the available knowledge on the efficacy of chemotherapy derives from the treatment of advanced head and neck cancer rather than specific studies of HPV+OPC. Since 1976, many clinical studies have compared CRT to RT alone in the primary management of locally advanced head and neck cancers and have demonstrated an advantage to CRT in both survival and locoregional control. Cisplatin is considered the standard agent, and a survival advantage was seen for those patients who received radiation with concurrent cisplatin. Despite this no trials directly comparing cisplatin with other agents in this context have been conducted. The other agent that is widely used is Cetuximab, a monoclonal antibody directed at the epidermal growth factor receptor (EGFR). A 10% survival advantage at three years was noted when cetuximab was given concurrently with radiation (bioradiation). Cetuximab trials were completed prior to knowledge of HPV status. The main toxicity is an acneiform rash, but it has not been compared directly to cisplatin in HPV+OPC, although RTOG 1016 is addressing this question. Concurrent chemotherapy is also superior to chemotherapy alone (induction chemotherapy) followed by radiation. Cetuximab shows no advantage when added to cisplatin in combination with radiation. Although chemoradiation became a treatment standard based on clinical trials and in particular, meta-analyses, a subsequent population based study of patients with OPC, indicated no advantage to the addition of chemotherapy to radiation in either HPV+OPC or HPV-OPC, and significant concerns about added toxicity.
Chemotherapy also has a role, combined with radiation, in the postoperative setting (adjuvant therapy). Generally it is used where the pathology of the resected specimen indicates features associated with high risk of locoregional recurrence (e.g. extracapsular extension through involved lymph nodes or very close margins). It has shown improved disease-free survival and locoregional control in two very similar clinical trials in such high risk patients, EORTC 22931 (1994–2000) and RTOG 9501 (1995–2000). However, for HPV+OPC patients, such extracapsular spread does not appear to be an adverse factor and the addition of chemotherapy to radiation in this group provided no further advantage. Since the sample size to detect a survival advantage is large, given the small number of events in this group, these studies may have been underpowered and the question of the utility of adding chemotherapy is being addressed in a randomized clinical trial (ADEPT) with two year locoregional control and disease free survival as the endpoint. The addition of chemotherapy to radiation increases acute and late toxicity. In the GORTEC trial, chemotherapy with docetaxel provided improved survival and locoregional control in locally advanced OPC, but was associated with increased mucositis and need for feeding by gastrostomy. Chemotherapy and radiation are associated with a risk of death of 3–4% in this context. It is unclear whether the added toxicity of adding chemotherapy to radiation is offset by significant clinical benefit in disease control and survival.
It is thought that HPV+OPC patients benefit better from radiotherapy and concurrent cetuximab treatment than HPV-OPC patients receiving the same treatment, and that radiation and cisplatin induce an immune response against an antigenic tumour which enhances their effect on the cancer cells. Although the incidence of HPV positivity is low (10–20%), an advantage for HPV+OPC was seen in trials of both cetuximab and panitumumab, a similar anti-EGFR agent, but not a consistent interaction with treatment, although HPV+OPC appears not to benefit to the same extent as HPV-OPC to second line anti-EGFR therapy, possibly due to lower EGFR expression in HPV+OPC.
Determination of treatment options depends on certain factors, some of which affect internal organs and others that affect personal appearance. When determining treatment, oncologists consider the initial location the tumor, the likelihood of body function deterioration, the effect on appearance, and the patient's potential response to chemotherapy and radiation. Surgery is the least successful of the treatment options; the tumor cannot be completely removed because it develops within the cells. Chemotherapy follows surgery to shrink or eliminate the remaining cancer cells.
Stem cell research under clinical trial shows promise to replace lost cells.
The aggressiveness of this cancer requires the response of a large team of specialists, possibly including a pediatric surgeon, oncologist, hematologist, specialty nurse, and rehabilitation specialists. Social workers and psychologists aid recovery by building a system of emotional support. Treatment is harsh on the body and may result in side effects including mood swings, learning difficulties, memory loss, physical deformations or restrictions, and potential risk of secondary cancers.
Nasopharyngeal carcinoma can be treated by surgery, by chemotherapy, or by radiotherapy. The expression of EBV latent proteins within undifferentiated nasopharyngeal carcinoma can be potentially exploited for immune-based therapies.
Surgery is usually the first treatment that a patient undergoes for Merkel-cell cancer. Lesions usually appear purple-red in color, and there is little else to distinguish this variant of skin cancer from other types. Its identity usually comes as a surprise after surgery and pathologic examination.
As with surgery for most other forms of cancer, it is normal for the surgeon to remove a border of healthy tissue surrounding the tumor. While it has been thought that leaving this margin may not be as critical as it is in the surgical resection of melanoma, studies also reveal that local recurrences are fairly common in MCC near the site of the surgery.
Local or regional lymph nodes are usually removed if the lesion is more than 1 cm in diameter, due to a high risk that they will contain cancer cells (micrometastasis) that could develop into a new tumor or spread further. Sometimes, however, the doctor will first perform a sentinel lymph node biopsy. In this procedure, the doctor injects a dye or radioactive substance near the tumor. This material flows into adjacent lymph nodes, which are identified, removed, and checked for cancer cells, indicating the sites where cancer is most likely to spread (the "sentinel" nodes). This procedure has been demonstrated to be an important prognostic indicator. Results help dictate the use of appropriate adjuvant therapies. Usually, however, surgery alone is insufficient to control Merkel-cell carcinoma.
Concerns over the morbidity associated with traditional open surgical en-bloc resection, led to exploring alternative approaches using radiation. Intensity modulated radiation therapy (IMRT) can provide good control of primary tumours while preserving excellent control rates, with reduced toxicity to salivary and pharyngeal structures relative to earlier technology. HPV+OPC has shown increased sensitivity to radiation with more rapid regression, compared to HPV-OPC. IMRT has a two-year disease free survival between 82 and 90%, and a two-year disease specific survival up to 97% for stage I and II.
Reported toxicities include dry mouth (xerostomia) from salivary gland damage, 18% (grade 2); difficulty swallowing (dysphagia) from damage to the constrictor muscles, larynx and oesophageal sphincter, 15% (grade 2); subclinical aspiration up to 50% (reported incidence of aspiration pneumonia approximately 14%); hypothyroidism 28–38% at three years (may be up to 55% depending on amount of the thyroid gland exposed to over 45 Gy radiation; esophageal stenosis 5%; osteonecrosis of the mandible 2.5%; and need for a gastrostomy tube to be placed at some point during or up to one year after treatment 4% (up to 16% with longer follow up). Concerns have been expressed regarding excessive short and long term toxicity, especially dysphagia and xerostomia, and hence whether standard doses expose patients with better prognoses are being exposed to overtreatment and unnecessary side effects.
Kaposi sarcoma is not curable, but it can often be treatable for many years. In KS associated with immunodeficiency or immunosuppression, treating the cause of the immune system dysfunction can slow or stop the progression of KS. In 40% or more of peoples with AIDS-associated Kaposi sarcoma, the Kaposi lesions will shrink upon first starting highly active antiretroviral therapy (HAART). However, in a certain percentage of such people, Kaposi sarcoma may again grow after a number of years on HAART, especially if HIV is not completely suppressed.
People with a few local lesions can often be treated with local measures such as radiation therapy or cryosurgery. Weak evidence suggests that antiretroviral therapy in combination with chemotherapy is more effective than either of those two therapies individually. Limited basic and clinical evidence suggest that topical beta-blockers, such as timolol, may induce regression of localized lesions in classic as well as HIV-associated Kaposi sarcoma. In general, surgery is not recommended, as Kaposi sarcoma can appear in wound edges. In general, more widespread disease, or disease affecting internal organs, is treated with systemic therapy with interferon alpha, liposomal anthracyclines (such as Doxil) or paclitaxel.
Treatment of rhabdomyosarcoma is a multidisciplinary practice involving the use of surgery, chemotherapy, radiation, and possibly immunotherapy. Surgery is generally the first step in a combined therapeutic approach. Resectability varies depending on tumor site, and RMS often presents in sites that don't allow for full surgical resection without significant morbidity and loss of function. Less than 20% of RMS tumors are fully resected with negative margins. Fortunately, rhabdomyosarcomas are highly chemosensitive, with approximately 80% of cases responding to chemotherapy. In fact, multi-agent chemotherapy is indicated for all patients with rhabdomyosarcoma. Before the use of adjuvant and neoadjuvant therapy involving chemotherapeutic agents, treatment solely by surgical means had a survival rate of <20%. Modern survival rates with adjuvant therapy are approximately 60–70%.
There are two main methods of chemotherapy treatment for RMS. There is the VAC regimen, consisting of vincristin, actinomyocin D, and cyclophosphamide, and the IVA regimen, consisting of ifosfamide, vincristin, and actinomyocin D. These drugs are administered in 9–15 cycles depending on the staging of the disease and other therapies used. Other drug and therapy combinations may also show additional benefit. Addition of doxorubicin and cisplatin to the VAC regimen was shown to increase survival rates of patients with alveolar-type, early-stage RMS in IRS study III, and this same addition improved survival rates and doubled bladder salvage rates in patients with stage III RMS of the bladder.
Radiation therapy, which kill cancer cells with focused doses of radiation, is often indicated in the treatment of rhabdomyosarcoma, and the exclusion of this treatment from disease management has been shown to increase recurrence rates. Radiation therapy is used when resecting the entirety of the tumor would involve disfigurement or loss of important organs (eye, bladder, etc.). Generally, in any case where a lack of complete resection is suspected, radiation therapy is indicated. Administration is usually following 6–12 weeks of chemotherapy if tumor cells are still present. The exception to this schedule is the presence of parameningeal tumors that have invaded the brain, spinal cord, or skull. In these cases radiation treatment is started immediately. In some cases, special radiation treatment may be required. Brachytherapy, or the placement of small, radioactive “seeds” directly inside the tumor or cancer site, is often indicated in children with tumors of sensitive areas such as the testicles, bladder, or vagina. This reduces scattering and the degree of late toxicity following dosing. Radiation therapy is more often indicated in higher stage classifications.
Immunotherapy is a more recent treatment modality that is still in development. This method involves recruiting and training the patient's immune system to target the cancer cells. This can be accomplished through administering small molecules designed to pull immune cells towards the tumors, taking immune cells pulled from the patient and training to attack tumors through presentation with tumor antigen, or other experimental methods. A specific example here would be presenting some of the patient's dendritic cells, which direct the immune system to foreign cells, with the PAX3-FKHR fusion protein in order to focus the patient's immune system to the malignant RMS cells. All cancers, including rhabdomyosarcoma, could potentially benefit from this new, immune-based approach.
Chemotherapy in throat cancer is not generally used to "cure" the cancer as such. Instead, it is used to provide an inhospitable environment for metastases so that they will not establish in other parts of the body. Typical chemotherapy agents are a combination of paclitaxel and carboplatin. Cetuximab is also used in the treatment of throat cancer.
Docetaxel-based chemotherapy has shown a very good response in locally advanced head and neck cancer. Docetaxel is the only taxane approved by US FDA for head and neck cancer, in combination with cisplatin and fluorouracil for the induction treatment of inoperable, locally advanced squamous cell carcinoma of the head and neck.
While not specifically a chemotherapy, amifostine is often administered intravenously by a chemotherapy clinic prior to IMRT radiotherapy sessions. Amifostine protects the gums and salivary glands from the effects of radiation.
Photodynamic therapy may have promise in treating mucosal dysplasia and small head and neck tumors. Amphinex is giving good results in early clinical trials for treatment of advanced head and neck cancer.
Specific treatment depends on the location, type, and stage of the tumour. Treatment may involve surgery, radiotherapy, or chemotherapy, alone or in combination. This is a specialised area which requires the coordinated expertise of ear, nose and throat (ENT) surgeons (Otorhinolaryngologists) and Oncologists. A severely affected patient may require a laryngectomy, the complete or partial removal of the vocal cords.
In the treatment of Kangri cancer, surgery is, most often, the first-line course of action to remove the primary tumor.
Removal of the mast cell tumor through surgery is the treatment of choice. Antihistamines, such as diphenhydramine, are given prior to surgery to protect against the effects of histamine released from the tumor. Wide margins (two to three centimeters) are required because of the tendency for the tumor cells to be spread out around the tumor. If complete removal is not possible due to the size or location, additional treatment, such as radiation therapy or chemotherapy, may be necessary. Prednisone is often used to shrink the remaining tumor portion. H2 blockers, such as cimetidine, protect against stomach damage from histamine. Vinblastine and CCNU are common chemotherapy agents used to treat mast cell tumors.
Toceranib and masitinib, examples of receptor tyrosine kinase inhibitors, are used in the treatment of canine mast cell tumors. Both were recently approved by the U.S. Food and Drug Administration (FDA) as dog-specific anticancer drugs.
Grade I or II mast cell tumors that can be completely removed have a good prognosis. One study showed about 23 percent of incompletely removed grade II tumors recurred locally. Any mast cell tumor found in the gastrointestinal tract, paw, or on the muzzle has a guarded prognosis. Previous beliefs that tumors in the groin or perineum carried a worse prognosis have been discounted. Tumors that have spread to the lymph nodes or other parts of the body have a poor prognosis. Any dog showing symptoms of mastocytosis or with a grade III tumor has a poor prognosis. Dogs of the Boxer breed have a better than average prognosis because of the relatively benign behavior of their mast cell tumors. Multiple tumors that are treated similarly to solitary tumors do not seem to have a worse prognosis.
Mast cell tumors do not necessarily follow the histological prognosis. Further prognostic information can be provided by AgNOR stain of histological or cytological specimen. Even then, there is a risk of unpredictable behavior.
Treatment of small melanomas is often not necessary, but large tumors can cause discomfort and are usually surgically removed. Cisplatin and cryotherapy can be used to treat small tumors less than 3 centimeters, but tumors may reoccur. Cimetidine, a histamine stimulator, can cause tumors to regress in some horses, but may take up to 3 months to produce results and multiple treatments may be needed throughout the horse's life. There are few viable treatment options for horses with metastatic melanoma. However, gene therapy injections utilizing interleukin-12 and 18-encoding DNA plasmids have shown promise in slowing the progression of tumors in patients with metastatic melanoma.
External beam radiotherapy has been used in one person to prevent the relapse and growth of tumor metastases to the head and neck regions. The prophylactic applications of radiation have been noted as “encouraging” in this one case, reducing some tumors and eliminating others.
Another study with a couple of the same authors found that radiotherapy after surgery helped with the reduction and cure of head and neck tumors in additional cases. The researchers suggest that external beam radiotherapy should be part of the treatment course for patients who have or at risk of developing tumors in the head and neck areas.
Breast implant-associated ALCL is a recently recognized lymphoma and definitive management and therapy is under evaluation. However, it appears that removal of the implant, and resection of the capsule around the implant as well as evaluation by medical and surgical oncologists are cornerstones. Still under evaluation is the extent of capsulectomy: partial versus complete capsulectomy; similarly it is not defined the significance of replacement of the implant in the affected breast, or the removal of contralateral implant. Similarly, the value of radiation therapy and chemotherapy are under evaluation.
Currently, there is a drug, LDK378, undergoing Phase III clinical trials at Vanderbilt University that targets ALK positive small cell lung cancer, and has showed clinical promise in its previous clinical trials. Because approximately 70% of ALCL neoplasms are also ALK positive, there is hope that similar highly selective and potent ALK inhibitors may be used in the future to treat ALK positive cases of ALCL.
Due to the high risk of recurrence and ensuing problems, close monitoring of dogs undergoing chemotherapy is important. The same is true for dogs that have entered remission and ceased treatment. Monitoring for disease and remission/recurrence is usually performed by palpation of peripheral lymph nodes. This procedure detects gross changes in peripheral lymph nodes. Some of the blood tests used in diagnosing lymphoma also offer greater objectivity and provide an earlier warning of an animal coming out of remission.
Complete cure is rare with lymphoma and treatment tends to be palliative, but long remission times are possible with chemotherapy. With effective protocols, average first remission times are 6 to 8 months. Second remissions are shorter and harder to accomplish. Average survival is 9 to 12 months. The most common treatment is a combination of cyclophosphamide, vincristine, prednisone, L-asparaginase, and doxorubicin. Other chemotherapy drugs such as chlorambucil, lomustine (CCNU), cytosine arabinoside, and mitoxantrone are sometimes used in the treatment of lymphoma by themselves or in substitution for other drugs. In most cases, appropriate treatment protocols cause few side effects, but white blood cell counts must be monitored.
Allogeneic and autologous stem cell transplantations (as is commonly done in humans) have recently been shown to be a possible treatment option for dogs. Most of the basic research on transplantation biology was generated in dogs. Current cure rates using stem cell therapy in dogs approximates that achieved in humans, 40-50%.
When cost is a factor, prednisone used alone can improve the symptoms dramatically, but it does not significantly affect the survival rate. The average survival times of dogs treated with prednisone and untreated dogs are both one to two months. Using prednisone alone can cause the cancer to become resistant to other chemotherapy agents, so it should only be used if more aggressive treatment is not an option.
Isotretinoin can be used to treat cutaneous lymphoma.
Most squamous cell carcinomas are removed with surgery. A few selected cases are treated with topical medication. Surgical excision with a free margin of healthy tissue is a frequent treatment modality. Radiotherapy, given as external beam radiotherapy or as brachytherapy (internal radiotherapy), can also be used to treat squamous cell carcinomas.
Mohs surgery is frequently utilized; considered the treatment of choice for squamous cell carcinoma of the skin, physicians have also utilized the method for the treatment of squamous cell carcinoma of the mouth, throat, and neck. An equivalent method of the CCPDMA standards can be utilized by a pathologist in the absence of a Mohs-trained physician. Radiation therapy is often used afterward in high risk cancer or patient types.
Electrodessication and curettage or EDC can be done on selected squamous cell carcinoma of the skin. In areas where SCC's are known to be non-aggressive, and where the patient is not immunosuppressed, EDC can be performed with good to adequate cure rate.
High-risk squamous cell carcinoma, as defined by those occurring around the eye, ear, or nose, is of large size, is poorly differentiated, and grows rapidly, requires more aggressive, multidisciplinary management.
Nodal spread:
1. Surgical block dissection if palpable nodes or in cases of Marjolin's ulcers but the benefit of prophylactic block lymph node dissection with Marjolin's ulcers is not proven.
2. Radiotherapy
3. Adjuvant therapy may be considered in those with high-risk SCC even in the absence of evidence for local mestastasis. Imiquimod (Aldara) has been used with success for squamous cell carcinoma "in situ" of the skin and the penis, but the morbidity and discomfort of the treatment is severe. An advantage is the cosmetic result: after treatment, the skin resembles normal skin without the usual scarring and morbidity associated with standard excision. Imiquimod is not FDA-approved for any squamous cell carcinoma.
In general, squamous cell carcinomas have a high risk of local recurrence, and up to 50% do recur. Frequent skin exams with a dermatologist is recommended after treatment.
Appropriate sun-protective clothing, use of broad-spectrum (UVA/UVB) sunscreen with at least SPF 50, and avoidance of intense sun exposure may prevent skin cancer.
Some patients have no symptoms, spontaneous remission, or a relapsing/remitting course, making it difficult to decide whether therapy is needed. In 2002, authors from Sapienza University of Rome stated on the basis of a comprehensive literature review that "clinical observation without treatment is advisable when possible."
Therapeutic options include surgery, radiation therapy, and chemotherapy. Surgery is used to remove single lymph nodes, central nervous system lesions, or localized cutaneous disease. In 2014, Dalia and colleagues wrote that for patients with extensive or systemic Rosai–Dorfman disease, "a standard of care has not been established" concerning radiotherapy and chemotherapy.
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
CUP is a term that refers to many different cancers. For that reason, treatment depends on where the cancer is found, the microscopic appearance of the cancer cells, the biochemical characterization of the cells, and the patient’s age and overall physical condition. In women, who present with axillary lymph node involvement, treatment is offered along the lines of breast cancer. In patients, who have neck lymph node involvement, then treatment is offered along the lines of head and neck cancer. If inguinal lymph nodes are involved, then treatment may be offered along the lines of genitourinary cancer.
If the site of origin is unknown or undiscovered, then the histology of the tumor (e.g., adenocarcinoma, squamous cell or mesenchymal) can usually be identified, and a probable origin may be assumed. When this is possible, then treatment is based on the type of cell and probable origin. Based on histological subtype, combination chemotherapy may be selected. A combination of carboplatin and paclitaxel is often used. Advances techniques such as FISH and tissue of origin testing may also be employed. Germ cell tumors often carry abnormality of chromosome 12, which if identified, directs treatment for metastatic germ cell tumors.
No method is standard for all forms of CUP, but chemotherapy, radiation therapy, hormone therapy, and surgery may be used alone or in combination to treat patients who have CUP. Even when the cancer is unlikely to be cured, treatment may help the patient live longer or improve the patient’s quality of life. Radiation may be used to shrink a variety of local tumors. However, the potential side effects of the treatment must be considered along with the potential benefits.
In CUP to secondary neck nodes, surgery followed by external beam radiotherapy is sufficient.
For CUP with an unfavorable prognosis, treatment with taxanes may provide a slight survival benefit. The uncertainties and ambiguity inherent in a CUP diagnosis may cause additional stress for the patient.
Treatment of hypopharyngeal cancer depends on the prognosis (chance of recovery), age, stage, and general health of the patient. Because hypopharyngeal cancer is often advanced at the time of diagnosis, treatment also depends on the overall goal. The goal may simply be to keep the patient talking, eating, and breathing normally.
Treatment usually begins with surgery and then a course of radiation for cancer that has progressed past Stage I. For cancer that is advanced, which is typical of hypopharyngeal cancer, neoadjuvant chemotherapy may be used. This is performed by administering chemotherapy before surgery. Neoadjuvant chemotherapy in conjunction with radiation and surgery has yielded the best results in patients with Stage III and Stage IV cancers.