Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As of 2017, eleven disease-modifying medications have been approved by regulatory agencies for relapsing-remitting multiple sclerosis (RRMS). They are interferon beta-1a, interferon beta-1b, glatiramer acetate, mitoxantrone, natalizumab, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, daclizumab, and ocrelizumab.
Their cost effectiveness as of 2012 is unclear. In May 2016 the FDA approved daclizumab for the treatment of relapsing multiple sclerosis in adults, with requirements for postmarketing studies and submission of a formal risk evaluation and mitigation strategy. In March 2017 the FDA approved ocrelizumab, a humanized anti-CD20 monoclonal antibody, as a treatment for RRMS, with requirements for several Phase IV clinical trials.
In RRMS they are modestly effective at decreasing the number of attacks. The interferons and glatiramer acetate are first-line treatments and are roughly equivalent, reducing relapses by approximately 30%. Early-initiated long-term therapy is safe and improves outcomes. Natalizumab reduces the relapse rate more than first-line agents; however, due to issues of adverse effects is a second-line agent reserved for those who do not respond to other treatments or with severe disease. Mitoxantrone, whose use is limited by severe adverse effects, is a third-line option for those who do not respond to other medications. Treatment of clinically isolated syndrome (CIS) with interferons decreases the chance of progressing to clinical MS. Efficacy of interferons and glatiramer acetate in children has been estimated to be roughly equivalent to that of adults. The role of some newer agents such as fingolimod, teriflunomide, and dimethyl fumarate, as of 2011, is not yet entirely clear.
As of 2017, rituximab was widely used off-label to treat RRMS.
As of 2017, rituximab has been widely used off-label to treat progressive primary MS. In March 2017 the FDA approved ocrelizumab, as a treatment for primary progressive MS, the first drug to gain that approval, with requirements for several Phase IV clinical trials.
, only one medication, mitoxantrone, has been approved for secondary progressive MS. In this population tentative evidence supports mitoxantrone moderately slowing the progression of the disease and decreasing rates of relapses over two years.
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
Typical tumefactive lesions have been found to be responsive to corticosteroids because of their immunosuppressive and anti-inflammatory properties. They restore the blood-brain barrier and induce cell death of T-cells.
No standard treatment exists, but practitioners seem to apply intravenous corticosteroids, followed by plasmapheresis and cyclophosphamide in non-responsive cases High dose intravenous corticosteroids (methylprednisolone 1 g for 3–5 days) followed by oral tapering hasten clinical and radiological improvement in approximately 80% of patients
Plasmapheresis has been reported to work even in the absence of response to corticosteroids
Attacks are treated with short courses of high dosage intravenous corticosteroids such as methylprednisolone IV.
Plasmapheresis can be an effective treatment when attacks progress or do not respond to corticosteroid treatment. Clinical trials for these treatments contain very small numbers, and most are uncontrolled, though some report high success percentage.
Treatment typically involves improving the patient's quality of life. This is accomplished through the management of symptoms or slowing the rate of demyelination. Treatment can include medication, lifestyle changes (i.e. quit smoking, adjusting daily schedules to include rest periods and dietary changes), counselling, relaxation, physical exercise, patient education and, in some cases, deep brain thalamic stimulation (in the case of tremors). The progressive phase of MS appears driven by the innate immune system, which will directly contribute to the neurodegenerative changes that occur in progressive MS. Until now, there are no therapies that specifically target innate immune cells in MS. As the role of innate immunity in MS becomes better defined, it may be possible to better treat MS by targeting the innate immune system.
Treatments are patient-specific and depend on the symptoms that present with the disorder, as well as the progression of the condition.
No controlled trials have established the effectiveness of treatments for the prevention of attacks. Many clinicians agree that long term immunosuppression is required to reduce the frequency and severity of attacks, while others argue the exact opposite. Commonly used immunosuppressant treatments include azathioprine (Imuran) plus prednisone, mycophenolate mofetil plus prednisone, mitoxantrone, intravenous immunoglobulin (IVIG), and cyclophosphamide.
Though the disease is known to be auto-antibodies mediated, B-cell depletion has been tried with the monoclonal antibody rituximab, showing good results.
Several other disease modifying therapies are being tried. In 2007, Devic's disease was reported to be responsive to glatiramer acetate and to low-dose corticosteroids. Use of Mycophenolate mofetil is also currently under research.
Management Corticosteroids may be effective in some patients. Additional treatment options are beta-interferon or immunosuppressive therapy. Otherwise management is supportive and includes physiotherapy, occupational therapy and nutritional support in the later stages as patients lose their ability to eat.
There are no effective drugs that inhibit or cure the virus infection without toxicity. Therefore, treatment aims at reversing the immune deficiency to slow or stop the disease progress. In patients on immunosuppression, this means stopping the drugs or using plasma exchange to accelerate the removal of the biologic agent that put the person at risk for PML.
In HIV-infected people, this may mean starting highly active antiretroviral therapy (HAART). AIDS patients starting HAART after being diagnosed with PML tend to have a slightly longer survival time than patients who were already on HAART and then develop PML. Some AIDS patients with PML have been able to survive for several years, with HAART. A rare complication of effective HAART is immune reconstitution inflammatory syndrome (IRIS), in which increased immune system activity actually increases the damage caused by the JCV infection; although IRIS can often be managed with medication, it is extremely dangerous in PML.
Cidofovir was studied as possible treatment for PML and has been used on a case by case basis, working in some, but not others.
Cytarabine (also known as ARA-C), a chemotherapy drug used to treat certain cancers, has been prescribed on an experimental basis for a small number of non-AIDS PML patients and stabilized the neurological condition of a minority of these patients. One patient regained some cognitive function lost as a result of PML.
In June 2010, the first case report appeared of a PML patient being successfully treated with the anti malaria drug mefloquine with activity against the JC virus. The patient cleared the virus and had no further neurological deterioration.
Two case reports of using interleukin-2 successfully have been published. Some success have been reported with mirtazapine, but this has not been demonstrated in clinical trials.
A number of drugs work against JC virus in cell culture, but there is no proven, effective therapy in humans.
For example, 1-O-hexadecyloxypropyl-cidofovir (CMX001), suppresses JCV but has been found to have toxicity at therapeutic dosage. The number of patients treated with other therapies is too low to demonstrate effectiveness.
There is a wide range of treatments for central nervous system diseases. These can range from surgery to neural rehabilitation or prescribed medications.
Experimentation has shown that manipulating the levels of thyroid hormone can be considered as a strategy to promote remyelination and prevent irreversible damage in Multiple sclerosis patients. N-cadherin agonists have been identified and observed to stimulate neurite growth and cell migration, key aspects of promoting axon growth and remyelination after injury or disease. It has been shown that intranasal administration of aTf (apotransferrin) can protect myelin and induce remyelination.
Much of the research referenced in this section has been conducted in 2012 and represents very new information about demyelinating diseases and potential therapies for them.
No controlled clinical trials have been conducted on ADEM treatment, but aggressive treatment aimed at rapidly reducing inflammation of the CNS is standard. The widely accepted first-line treatment is high doses of intravenous corticosteroids, such as methylprednisolone or dexamethasone, followed by 3–6 weeks of gradually lower oral doses of prednisolone. Patients treated with methylprednisolone have shown better outcomes than those treated with dexamethasone. Oral tapers of less than three weeks duration show a higher chance of relapsing, and tend to show poorer outcomes. Other anti-inflammatory and immunosuppressive therapies have been reported to show beneficial effect, such as plasmapheresis, high doses of intravenous immunoglobulin (IVIg), mitoxantrone and cyclophosphamide. These are considered alternative therapies, used when corticosteroids cannot be used or fail to show an effect.
There is some evidence to suggest that patients may respond to a combination of methylprednisolone and immunoglobulins if they fail to respond to either separately
In a study of 16 children with ADEM, 10 recovered completely after high-dose methylprednisolone, one severe case that failed to respond to steroids recovered completely after IV Ig; the five most severe cases -with ADAM and severe peripheral neuropathy- were treated with combined high-dose methylprednisolone and immunoglobulin, two remained paraplegic, one had motor and cognitive handicaps, and two recovered. A recent review of IVIg treatment of ADEM (of which the previous study formed the bulk of the cases) found that 70% of children showed complete recovery after treatment with IVIg, or IVIg plus corticosteroids. A study of IVIg treatment in adults with ADEM showed that IVIg seems more effective in treating sensory and motor disturbances, while steroids seem more effective in treating impairments of cognition, consciousness and rigor. This same study found one subject, a 71-year-old man who had not responded to steroids, that responded to an IVIg treatment 58 days after disease onset.
Early and aggressive treatment is important to prevent irreversible neurological damage, hearing loss, or vision loss. Medications used include immunosuppressive agents and corticosteroids such a prednisone, or intravenous immunoglobulins (IVIG). Other drugs that have been used are mycophenolate mofetil (Cellcept), azathioprine (Imuran), cyclophosphamide, rituximab, and anti-TNF therapies.
Hearing aids or cochlear implants may be necessary in the event of hearing loss.
There is no known cure for neuromyotonia, but the condition is treatable. Anticonvulsants, including phenytoin and carbamazepine, usually provide significant relief from the stiffness, muscle spasms, and pain associated with neuromyotonia. Plasma exchange and IVIg treatment may provide short-term relief for patients with some forms of the acquired disorder. It is speculated that the plasma exchange causes an interference with the function of the voltage-dependent potassium channels, one of the underlying issues of hyper-excitability in autoimmune neuromyotonia. Botox injections also provide short-term relief. Immunosuppressants such as Prednisone may provide long term relief for patients with some forms of the acquired disorder.
RS3PE responds excellently to low dose corticosteroids, with sustained and often complete remission. Non-steroidal anti-inflammatory drugs (NSAIDs) have also been used. Hydroxychloroquine has proven effective in some cases.
Natalizumab (Tysabri) was approved in 2004 by the FDA for multiple sclerosis (MS). It was subsequently withdrawn from the market by its manufacturer after it was linked with three cases of PML. All 3 initial cases were taking natalizumab in combination with interferon beta-1a. After a safety review the drug was returned to the market in 2006 as a monotherapy for MS under a special prescription program. As of May 2011, over 130 cases of PML had been reported in MS patients, all in patients who had taken natalizumab for more than a year. While none of them had taken the drug in combination with other disease-modifying treatments, previous use of MS treatments increases the risk of PML between 3 and 4-fold. The estimated prevalence of PML in MS is 1.5 cases per thousand natalizumab users. Around 20% of MS patients with PML die, and most of the rest are very disabled.
A person with MS developed PML and died during a 4-year course of dimethyl-fumarate.
In most MS-associated optic neuritis, visual function spontaneously improves over 2–3 months, and there is evidence that corticosteroid treatment does not affect the long term outcome. However, for optic neuritis that is not MS-associated (or atypical optic neuritis) the evidence is less clear and therefore the threshold for treatment with intravenous corticosteroids is lower. Intravenous corticosteroids also reduce the risk of developing MS in the following two years in patients with MRI lesions; but this effect disappears by the third year of follow up.
Paradoxically, oral administration of corticosteroids in this situation may lead to more recurrent attacks than in non-treated patients (though oral steroids are generally prescribed after the intravenous course, to wean the patient off the medication). This effect of corticosteroids seems to be limited to optic neuritis and has not been observed in other diseases treated with corticosteroids.
A Cochrane Systematic Review studied the effect of corticosteroids for treating people with acute optic neuritis. Specific corticosteroids studied included intravenous and oral methylprednisone, and oral prednisone. The authors conclude that current evidence does not show a benefit of either intravenous or oral corticosteroids for rate of recovery of vision (in terms of visual acuity, contrast sensitivity, or visual fields)..
Balo concentric sclerosis is a disease in which the white matter of the brain appears damaged in concentric layers, leaving the axis cylinder intact. It was described by Joszef Balo who initially named it "leuko-encephalitis periaxialis concentrica" from the previous definition, and it is currently considered one of the borderline forms of multiple sclerosis.
Balo concentric sclerosis is a demyelinating disease similar to standard multiple sclerosis, but with the particularity that the demyelinated tissues form concentric layers. Scientists used to believe that the prognosis was similar to Marburg multiple sclerosis, but now they know that patients can survive, or even have spontaneous remission and asymptomatic cases.
It is also common that the clinical course is primary progressive, but a relapsing-remitting course has been reported.
It seems that the course gets better with prednisone therapy, although evidence of this is anecdotal and such conclusions are difficult to accept given that there are cases where patients spontaneously recover whether the patient was on steroid therapy or not.
It took its name from Otto Marburg. It can be diagnosed "in vivo" with an MRI scan.
If Marburg disease occurs in the form of a single large lesion, it can be radiologically indistinguishable from a brain tumor or abscess. It is usually lethal, but it has been found to be responsive to Mitoxantrone and Alemtuzumab, and it has also been responsive to autologous stem cell transplantation. Recent evidence shows that Marburg's presents a heterogeneous response to medication, as does standard MS.
The prognosis of this disease is very variable and can take three different courses: a monophasic, not remitting;
remitting;
and finally, progressive, with increase in deficits.
Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) because the unknown etiology of some of them, and sometimes known as borderline forms of multiple sclerosis, is a collection of multiple sclerosis variants, sometimes considered different diseases, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.
Multiple Sclerosis for some people is a syndrome more than a single disease. It can be considered among the acquired demyelinating syndromes with a multiphasic instead of monophasic behaviour. Multiple sclerosis also has a prodromal stage in which an unknown underlying condition, able to damage the brain, is present, but no lesion has still developed.
Marburg acute multiple sclerosis, also known as Marburg multiple sclerosis or acute fulminant multiple sclerosis, is considered one of the multiple sclerosis borderline diseases, which is a collection of diseases classified by some as MS variants and by others as different diseases. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis, and Schilder's disease. The graver course is one form of malignant multiple sclerosis, with patients reaching a significant level of disability in less than five years from their first symptoms, often in a matter of months.
Sometimes Marburg MS is considered a synonym for tumefactive MS, but not for all authors.
Relapsing-Remitting MS is considered aggressive when the frequency of exacerbations is not less than 3 during 2 years. Special treatment is often considered for this subtype. According to these definition aggressive MS would be a subtype of RRMS. Other authors disagree and define aggressive MS by the accumulation of disability, considering it as a rapidly disabling disease course
Current treatment is aimed at easing the symptoms, reducing inflammation, and controlling the immune system. The quality of the evidence for treating the oral ulcers associated with Behçet's disease, however, is poor.
High-dose corticosteroid therapy is often used for severe disease manifestations. Anti-TNF therapy such as infliximab has shown promise in treating the uveitis associated with the disease. Another Anti-TNF agent, etanercept, may be useful in people with mainly skin and mucosal symptoms.
Interferon alpha-2a may also be an effective alternative treatment, particularly for the genital and oral ulcers as well as ocular lesions. Azathioprine, when used in combination with interferon alpha-2b also shows promise, and colchicine can be useful for treating some genital ulcers, erythema nodosum, and arthritis.
Thalidomide has also been used due to its immune-modifying effect. Dapsone and rebamipide have been shown, in small studies, to have beneficial results for mucocutaneous lesions.
Given its rarity, the optimal treatment for acute optic neuropathy in Behçet's disease has not been established. Early identification and treatment is essential. Response to ciclosporin, periocular triamcinolone, and IV methylprednisone followed by oral prednisone has been reported although relapses leading to irreversible visual loss may occur even with treatment. Immunosuppressants such as interferon alpha and tumour necrosis factor antagonists may improve though not completely reverse symptoms of ocular Behçet's disease, which may progress over time despite treatment. When symptoms are limited to the anterior chamber of the eye prognosis is improved. Posterior involvement, particularly optic nerve involvement, is a poor prognostic indicator. Secondary optic nerve atrophy is frequently irreversible. Lumbar puncture or surgical treatment may be required to prevent optic atrophy in cases of intracranial hypertension refractory to treatment with immunomodulators and steroids.
IVIG could be a treatment for severe or complicated cases.
There are no treatments, only precautions which can be taken, mainly to reduce trauma to the head and avoiding physiological stress. Melatonin has been shown to provide cytoprotective traits to glial cells exposed to stressors such as excitotoxicity and oxidative stress. These stressors would be detrimental to cells with a genetically reduced activity of protein eIF2B. However, research connecting these ideas have not been conducted yet.