Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The infection is treated with antibiotics. Intravenous fluids and oxygen may be needed to stabilize the patient. There is a significant disparity between the untreated mortality and treated mortality rates: 10-60% untreated versus close to 0% treated with antibiotics within 8 days of initial infection. Tetracycline, Chloramphenicol, and doxycycline are commonly used. Infection can also be prevented by vaccination.
Some of the simplest methods of prevention and treatment focus on preventing infestation of body lice. Complete change of clothing, washing the infested clothing in hot water, and in some cases also treating recently used bedsheets all help to prevent typhus by removing potentially infected lice. Clothes also left unworn and unwashed for 7 days also cause both lice and their eggs to die, as they have no access to their human host. Another form of lice prevention requires dusting infested clothing with a powder consisting of 10% DDT, 1% malathion, or 1% permethrin, which kill lice and their eggs.
The rediscovery of oral rehydration therapy in the 1960s provided a simple way to prevent many of the deaths of diarrheal diseases in general.
Where resistance is uncommon, the treatment of choice is a fluoroquinolone such as ciprofloxacin. Otherwise, a third-generation cephalosporin such as ceftriaxone or cefotaxime is the first choice. Cefixime is a suitable oral alternative.
Typhoid fever, when properly treated, is not fatal in most cases. Antibiotics, such as ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, amoxicillin, and ciprofloxacin, have been commonly used to treat typhoid fever in microbiology. Treatment of the disease with antibiotics reduces the case-fatality rate to about 1%.
Without treatment, some patients develop sustained fever, bradycardia, hepatosplenomegaly, abdominal symptoms and, occasionally, pneumonia. In white-skinned patients, pink spots, which fade on pressure, appear on the skin of the trunk in up to 20% of cases. In the third week, untreated cases may develop gastrointestinal and cerebral complications, which may prove fatal in up to 10–20% of cases. The highest case fatality rates are reported in children under 4 years. Around 2–5% of those who contract typhoid fever become chronic carriers, as bacteria persist in the biliary tract after symptoms have resolved.
The American Public Health Association recommends treatment based upon clinical findings and before culturing confirms the diagnosis. Without treatment, death may occur in 10 to 60 percent of patients with epidemic typhus, with patients over age 60 having the highest risk of death. In the antibiotic era, death is uncommon if doxycycline is given. In one study of 60 hospitalized patients with epidemic typhus, no patient died when given doxycycline or chloramphenicol. Some patients also may need oxygen and intravenous (IV) fluids.
Without treatment, the disease is often fatal. Since the use of antibiotics, case fatalities have decreased from 4–40% to less than 2%.
The drug most commonly used is doxycycline or tetracycline, but chloramphenicol is an alternative. Strains that are resistant to doxycycline and chloramphenicol have been reported in northern Thailand. Rifampicin and azithromycin are alternatives. Azithromycin is an alternative in children and pregnant women with scrub typhus, and when doxycycline resistance is suspected. Ciprofloxacin cannot be used safely in pregnancy and is associated with stillbirths and miscarriage.
Combination therapy with doxycycline and rifampicin is not recommended due to possible antagonism.
Surgery is usually indicated in cases of intestinal perforation. Most surgeons prefer simple closure of the perforation with drainage of the peritoneum. Small-bowel resection is indicated for patients with multiple perforations.
If antibiotic treatment fails to eradicate the hepatobiliary carriage, the gallbladder should be resected. Cholecystectomy is not always successful in eradicating the carrier state because of persisting hepatic infection.
Tetracycline-group antibiotics (doxycycline, tetracycline) are commonly used. Chloramphenicol is an alternative medication recommended under circumstances that render use of tetracycline derivates undesirable, such as severe liver malfunction, kidney deficiency, in children under nine years and in pregnant women. The drug is administered for seven to ten days.
The treatment for bacillary angiomatosis is erythromycin given for three to four months.
The illness can be treated with tetracyclines (doxycycline is the preferred treatment), chloramphenicol, macrolides or fluoroquinolones.
As of 2017 there is no commercially available vaccine. A vaccine has been in development for scrub typhus known as the scrub typhus vaccine.
The disease can be fatal if left untreated, but endemic typhus is highly treatable with antibiotics. Most people recover fully, but death may occur in the elderly, severely disabled or patients with a depressed immune system. The most effective antibiotics include tetracycline and chloramphenicol. In United States, CDC recommends solely doxycycline.
Relapsing fever is easily treated with a one- to two-week-course of antibiotics, and most people improve within 24 hours. Complications and death due to relapsing fever are rare.
Tetracycline-class antibiotics are most effective. These can, however, induce a Jarisch–Herxheimer reaction in over half those treated, producing anxiety, diaphoresis, fever, tachycardia and tachypnea with an initial pressor response followed rapidly by hypotension. Recent studies have shown tumor necrosis factor-alpha may be partly responsible for this reaction.
Doxycycline has been used in the treatment of rickettsial infection.
Feeding on a human who carries the bacterium infects the louse. "R. prowazekii" grows in the louse's gut and is excreted in its feces. The disease is then transmitted to an uninfected human who scratches the louse bite (which itches) and rubs the feces into the wound. The incubation period is one to two weeks. "R. prowazekii" can remain viable and virulent in the dried louse feces for many days. Typhus will eventually kill the louse, though the disease will remain viable for many weeks in the dead louse.
Epidemic typhus has historically occurred during times of war and deprivation. For example, typhus killed hundreds of thousands of prisoners in Nazi concentration camps during World War II. The deteriorating quality of hygiene in camps such as Auschwitz, Theresienstadt, and Bergen-Belsen created conditions where diseases such as typhus flourished. Situations in the twenty-first century with potential for a typhus epidemic would include refugee camps during a major famine or natural disaster. In the periods between outbreaks, when human to human transmission occurs less often, the flying squirrel serves as a zoonotic reservoir for the "Rickettsia prowazekii" bacterium.
Henrique da Rocha Lima in 1916 then proved that the bacterium "Rickettsia prowazekii" was the agent responsible for typhus; he named it after H. T. Ricketts and Stanislaus von Prowazek, two zoologists who had died from typhus while investigating epidemics. Once these crucial facts were recognized, Rudolf Weigl in 1930 was able to fashion a practical and effective vaccine production method by grinding up the insides of infected lice that had been drinking blood. It was, however, very dangerous to produce, and carried a high likelihood of infection to those who were working on it.
A safer mass-production-ready method using egg yolks was developed by Herald R. Cox in 1938. This vaccine was widely available and used extensively by 1943.
No licensed vaccines are available.
An early attempt to create a scrub typhus vaccine occurred in the United Kingdom in 1937 (with the Wellcome Foundation infecting around 300,000 cotton rats in a classified project called "Operation Tyburn"), but the vaccine was not used. The first known batch of scrub typhus vaccine actually used to inoculate human subjects was dispatched to India for use by Allied Land Forces, South-East Asia Command in June 1945. By December 1945, 268,000 cc had been dispatched. The vaccine was produced at Wellcome′s laboratory at Ely Grange, Frant, Sussex. An attempt to verify the efficacy of the vaccine by using a placebo group for comparison was vetoed by the military commanders, who objected to the experiment.
Enormous antigenic variation in "Orientia tsutsugamushi" strains is now recognized, and immunity to one strain does not confer immunity to another. Any scrub typhus vaccine should give protection to all the strains present locally, to give an acceptable level of protection. A vaccine developed for one locality may not be protective in another, because of antigenic variation. This complexity continues to hamper efforts to produce a viable vaccine.
Treatment is primarily supportive in nature. Early supportive care with rehydration and symptomatic treatment improves survival. Rehydration may be via the oral or by intravenous route. These measures may include management of pain, nausea, fever and anxiety. The World Health Organization recommends avoiding the use of aspirin or ibuprofen for pain due to the bleeding risk associated with use of these medications.
Blood products such as packed red blood cells, platelets or fresh frozen plasma may also be used. Other regulators of coagulation have also been tried including heparin in an effort to prevent disseminated intravascular coagulation and clotting factors to decrease bleeding. Antimalarial medications and antibiotics are often used before the diagnosis is confirmed, though there is no evidence to suggest such treatment helps. A number of experimental treatments are being studied.
If hospital care is not possible, the World Health Organization has guidelines for care at home that have been relatively successful. In such situations, recommendations include using towels soaked in bleach solutions when moving infected people or bodies and applying bleach on stains. It is also recommended that the caregivers wash hands with bleach solutions and cover their mouth and nose with a cloth.
No specific treatment is currently approved. The Food and Drug Administration (FDA) advises people to be careful of advertisements making unverified or fraudulent claims of benefits supposedly gained from various anti-Ebola products.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
There is currently no effective marburgvirus-specific therapy for MVD. Treatment is primarily supportive in nature and includes minimizing invasive procedures, balancing fluids and electrolytes to counter dehydration, administration of anticoagulants early in infection to prevent or control disseminated intravascular coagulation, administration of procoagulants late in infection to control hemorrhaging, maintaining oxygen levels, pain management, and administration of antibiotics or antimycotics to treat secondary infections. Experimentally, recombinant vesicular stomatitis Indiana virus (VSIV) expressing the glycoprotein of MARV has been used successfully in nonhuman primate models as post-exposure prophylaxis. Novel, very promising, experimental therapeutic regimens rely on antisense technology: phosphorodiamidate morpholino oligomers (PMOs) targeting the MARV genome could prevent disease in nonhuman primates. Leading medications from Sarepta and Tekmira both have been successfully used in European humans as well as primates.
The illness lasts about a week and is rarely fatal. Treatment includes the administration of nonsteroidal anti-inflammatory agents or the application of heat to the affected muscles. Relapses during the weeks following the initial episode are a characteristic feature of this disease.
A spotted fever is a type of tick-borne disease which presents on the skin. They are all caused by bacteria of the genus "Rickettsia". Typhus is a group of similar diseases also caused by "Rickettsia" bacteria, but spotted fevers and typhus are different clinical entities.
The phrase apparently originated in Spain in the seventeenth century and was ‘loosely applied in England to typhus or any fever involving petechial eruptions.’ During the seventeenth and eighteenth centuries, it was thought to be ‘“cousin-germane” to and herald of the bubonic plague’, a disease which periodically afflicted the city of London and its environs during the sixteenth and seventeenth centuries, most notably during the Great Plague of 1665.
Types of spotted fevers include:
- Mediterranean spotted fever
- Rocky Mountain spotted fever
- Queensland tick typhus
- Helvetica Spotted fever
Trench fever (also known as "five-day fever", "quintan fever" ("febris quintana" in Latin), and "urban trench fever") is a moderately serious disease transmitted by body lice. It infected armies in Flanders, France, Poland, Galicia, Italy, Salonika, Macedonia, Mesopotamia, Russia and Egypt in World War I. Three noted sufferers during WWI were the authors J.R.R. Tolkien, A. A. Milne, and C.S. Lewis. From 1915 to 1918 between one-fifth and one-third of all British troops reported ill had trench fever while about one-fifth of ill German and Austrian troops had the disease. The disease persists among the homeless. Outbreaks have been documented, for example, in Seattle and Baltimore in the United States among injection drug users and in Marseille, France, and Burundi.
Trench fever is also called Wolhynia fever, shin bone fever, Meuse fever, His disease and His–Werner disease (after Wilhelm His, Jr. and Heinrich Werner).
The disease is caused by the bacterium "Bartonella quintana" (older names: "Rochalimea quintana", "Rickettsia quintana"), found in the stomach walls of the body louse. "Bartonella quintana" is closely related to "Bartonella henselae", the agent of cat scratch fever and bacillary angiomatosis.
Treatment is symptomatic and aims to prevent dehydration in young pigs, using products such as electrolyte and energy supplements. Good biosecurity protocols such as adequate quarantine, isolation of cases, and disinfection help prevent entry or spread of the disease in the herd. In Canada, the Canadian Swine Health Board developed detailed protocols on how to adequately disinfect transportation vehicles for live hogs and ensure the quality of the disinfecttion protocol.
It is caused by the bacteria "Rickettsia typhi", and is transmitted by the fleas that infest rats. While rat fleas are the most common vectors, cat fleas and mouse fleas are less common modes of transmission. These fleas are not affected by the infection. Human infection occurs because of flea-fecal contamination of the bites on human skin. Rats, cats, opossums maintain the rickettsia colonization by providing it with a host for its entire life cycle. Rats can develop the infection, and help spread the infection to other fleas that infect them, and help multiply the number of infected fleas that can then infect humans.
Less often, endemic typhus is caused by "Rickettsia felis" and transmitted by fleas carried by cats or opossums.
In the United States of America, murine typhus is found most commonly in southern California, Texas and Hawaii. In some studies, up to 13% of children were found to have serological evidence of infection.
After an incubation period around seven days, the disease manifests abruptly with chills, high fevers, muscular and articular pains, severe headache, and photophobia. The location of the bite forms a black ulcerous crust (tache noire). Around the fourth day of the illness, a widespread rash appears, first macular and then maculopapular and sometimes petechial.
Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.
The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.
Modern treatment approaches to encephalitis lethargica include immunomodulating therapies, and treatments to remediate specific symptoms.
Treatment for encephalitis lethargica in the early stages is patient stabilization, which may be very difficult. There is little evidence so far of a consistent effective treatment for the initial stages, though some patients given steroids have seen improvement.The disease becomes progressive, with evidence of brain damage similar to Parkinson's disease.
Treatment is then symptomatic. Levodopa (-DOPA) and other anti-parkinson drugs often produce dramatic responses; however, most patients given -DOPA experience s of the disease that are short lived.