Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure for Canavan disease, nor is there a standard course of treatment. Treatment is symptomatic and supportive. There is also an experimental treatment using lithium citrate. When a person has Canavan disease, his or her levels of N-acetyl aspartate are chronically elevated. The lithium citrate has proven in a rat genetic model of Canavan disease to be able to significantly decrease levels of N-acetyl aspartate. When tested on a human, the subject's condition reversed during a two-week wash-out period after withdrawal of lithium.
The investigation revealed both decreased N-acetyl aspartate levels in regions of the brain tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination. This evidence suggests that a larger controlled trial of lithium may be warranted as supportive therapy for children with Canavan disease.
Experimental gene therapy trial results, published in 2002, used a healthy gene to take over for the defective one that causes Canavan disease.
In human trials, the results of which were published in 2012, this method appeared to improve the life of the patient without long-term adverse effects during a 5-year follow-up.
Anti-helminthics are often used to kill off the worms, however in some cases this may cause patients to worsen due to toxins released by the dying worms. Albendazole, ivermectin, mebendazole, and pyrantel are all commonly used, though albendazole is usually the drug of choice. Studies have shown that anti-helminthic drugs may shorten the course of the disease and relieve symptoms. Therefore anti-helminthics are generally recommended, but should be administered gradually so as to limit the inflammatory reaction.
On April 27, 2017, the U.S. Food and Drug Administration approved Brineura (cerliponase alfa) as the first specific treatment for NCL. Brineura is enzyme replacement therapy manufactured through recombinant DNA technology. The active ingredient in Brineura, cerliponase alpha, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Brineura is administered into the cerebrospinal fluid by infusion via a surgically implanted reservoir and catheter in the head (intraventricular access device).
Anti-helminthics should generally be paired with corticosteroids in severe infections to limit the inflammatory reaction to the dying parasites. Studies suggest that a two-week regimen of a combination of mebendazole and prednisolone significantly shortened the course of the disease and length of associated headaches without observed harmful side effects. Other studies suggest that albendazole may be more favorable, because it may be less like to incite an inflammatory reaction. The Chinese herbal medicine long-dan-xie-gan-tan (LDGXT) has also been shown to have a similar anti inflammatory effect, and in mild cases may be used alone to relieve symptoms while infection resolves itself.
In late 2007, it was reported by Dr. David Pearce et al. that Cellcept, an immunosuppressant medication commonly used in bone marrow transplants, may be useful in slowing down the progress of Juvenile NCL. Fundraising is currently underway to gather the funds needed to start a clinical trial to test the safety and efficiency of CellCept for Juvenile NCL.
Effective antibiotics include penicillin G, ampicillin, amoxicillin and doxycycline. In more severe cases cefotaxime or ceftriaxone should be preferred.
Glucose and salt solution infusions may be administered; dialysis is used in serious cases. Elevations of serum potassium are common and if the potassium level gets too high special measures must be taken. Serum phosphorus levels may likewise increase to unacceptable levels due to kidney failure.
Treatment for hyperphosphatemia consists of treating the underlying disease, dialysis where appropriate, or oral administration of calcium carbonate, but not without first checking the serum calcium levels (these two levels are related). Administration of corticosteroids in gradually reduced doses (e.g., prednisolone) for 7–10 days is recommended by some specialists in cases of severe hemorrhagic effects. Organ-specific care and treatment are essential in cases of kidney, liver, or heart involvement.
After infection, steroids, such as prednisone may be used to relieve muscle pain associated with larval migration.
Early administration of anthelmintics, such as mebendazole or albendazole, decreases the likelihood of larval encystation, particularly if given within three days of infection. However, most cases are diagnosed after this time.
In humans, Mebendazole (200–400 mg three times a day for three days) or albendazole (400 mg twice a day for 8–14 days) are given to treat trichinosis. These drugs prevent newly hatched larvae from developing, but should not be given to pregnant women or children under two years of age.
Gene-based therapies for patients with HSAN I are not available to date, hence supportive care is the only treatment available for the patients. Ulcero-mutilating complications are the most serious, prominent, and leading diagnostic features in HSAN I. Since the complications mimic foot ulcers caused by diabetic neuropathy, the treatment for foot ulcers and infections can follow the guidelines given for diabetic foot care which starts with early and accurate counseling of patients about risk factors for developing foot ulcerations. Orthopedic care and the use of well fitting shoes without pressure points should also be included. Recently, the treatment of the foot complications has reached an efficient level allowing treatment on an outpatient basis. Early treatment of the foot complications often avoids hospitalization and, in particular, amputations. In sum, the principles of the treatment are removal of pressure to the ulcers, eradication of infection, and specific protective footwear afterwards.
Evidence in support of the idea that helminthic infections reduce the severity of autoimmune diseases is primarily derived from animal models. Studies conducted on mice and rat models of colitis, muscular sclerosis, type 1 diabetes, and asthma have shown helminth-infected subjects to display protection from the disease. While helminths are often considered a homogenous group, considerable differences exist between species and the utilization of species in clinical research varies between human and animal trials. As such, caution must be exercised when interpreting the results from animal models.
Helminthic therapy is currently being studied as a treatment for several (non-viral) autoimmune diseases in humans including celiac disease, Crohn's disease, multiple sclerosis, ulcerative colitis, and atherosclerosis. It is currently unknown which clinical dose or species of helminth is the most effective method of treatment. Hookworms have been linked to reduced risk of developing asthma, while "Ascaris lumbricoides" (roundworm infection) was associated with an "increased" risk of asthma. Similarly, "Hymenolepis nana", "Trichoris trichiura", "Ascaris lumbricoides", "Strongyloides stercolaris", "Enterobius vermicularis", and "Trichuris suis" ova have all been found to lower the number of symptom exacerbations, reduce the number of symptom relapses, and decrease the number of new or enlarging brain lesions in patients with multiple sclerosis at doses ranging from 1,180 to 9,340 eggs per gram. However, "Ascaris lumbricoides", "Strongyloides stercolaris" and "Enterobius vermicularis" are not considered suitable for therapeutic use in humans because they do not meet the criteria for a therapeutic helminth.
"Trichuris suis" ova has been used in most cases to treat autoimmune disorders because it is thought to be non-pathogenic in humans and therefore has been rendered as safe.
The use of "Trichuris suis" ova has been granted by the USA Food and Drug Administration as an investigational medicinal product (IMP). While in the UK, the hookworm "Necator americanus" has been granted an IMP license by the Medicines and Healthcare Regulatory Authority. This hookworm is likely to be relatively safe, although it can cause temporary gastrointestinal side effects, especially following the initial inoculation and with larger doses.
The general ideal characteristics for a therapeutic helminth are as follows:
- Little or no pathogenic potential
- Does not multiply in the host
- Cannot be directly spread to close contacts
- Produces a self-limited colonization in humans
- Produces an asymptomatic colonization in humans
- Does not alter behaviour in patients with depressed immunity
- Is not affected by most commonly used medications
- Can be eradicated with an anti-helminthic drug
- Can be isolated free of other potential pathogens
- Can be isolated or produced in large numbers
- Can be made stable for transport and storage
- Easy to administer
Anecdotal data gathered from helminth self-treaters and their physicians and presented in socio-medical studies suggest that a much larger number of diseases may be amenable to helminthic therapy than are currently being investigated by formal clinical trials.
If patients with HSAN I receive appropriate treatment and counseling, the prognosis is good. Early treatment of foot infections may avoid serious complications. Nevertheless, the complications are manageable, thus allowing an acceptable quality of life. The disease progresses slowly and does not influence the life expectancy if signs and symptoms are properly treated.
When proper treatment is provided for patients with rat-bite fever, the prognosis is positive. Without treatment, the infection usually resolves on its own, although it may take up to a year to do so. A particular strain of rat-bite fever in the United States can progress and cause serious complications that can be potentially fatal. Before antibiotics were used, many cases resulted in death. If left untreated, streptobacillary rat-bite fever can result in infection in the lining of the heart, covering over the spinal cord and brain, or in the lungs. Any tissue or organ throughout the body may develop an abscess.
Several classes of antibiotics are effective in treating bubonic plague. These include aminoglycosides such as streptomycin and gentamicin, tetracyclines (especially doxycycline), and the fluoroquinolone ciprofloxacin. Mortality associated with treated cases of bubonic plague is about 1–15%, compared to a mortality of 40–60% in untreated cases.
People potentially infected with the plague need immediate treatment and should be given antibiotics within 24 hours of the first symptoms to prevent death. Other treatments include oxygen, intravenous fluids, and respiratory support. People who have had contact with anyone infected by pneumonic plague are given prophylactic antibiotics. Using the broad-based antibiotic streptomycin has proven to be dramatically successful against the bubonic plague within 12 hours of infection.
Cure rates are extremely good with modern treatments, but successful cure results may be of no symptomatic benefit to patients.
The disease can be fatal if left untreated, but endemic typhus is highly treatable with antibiotics. Most people recover fully, but death may occur in the elderly, severely disabled or patients with a depressed immune system. The most effective antibiotics include tetracycline and chloramphenicol. In United States, CDC recommends solely doxycycline.
The two drugs that have been well-described for the treatment of hymenolepiasis are praziquantel and niclosamide. Praziquantel, which is parasiticidal in a single dose for all the stages of the parasite, is the drug of choice because it acts very rapidly against "H. nana". Although structurally unrelated to other anthelminthics, it kills both adult worms and larvae. "In vitro", the drug produces vacuolization and disruption of the tegument in the neck of the worms, but not in more posterior portions of the strobila. Praziquantel is well absorbed when taken orally, and it undergoes first-pass metabolism and 80% of the dose is excreted as metabolites in urine within 24 hours.
Repeated treatment is required for "H. nana" at an interval of 7–10 days.
Praziquantel as a single dose (25 mg/kg) is the current treatment of choice for hymenolepiasis and has an efficacy of 96%. Single-dose albendazole (400 mg) is also very efficacious (>95%).
A three-day course of nitazoxanide is 75–93% efficacious. The dose is 1 g daily for adults and children over 12; 400 mg daily for children aged 4 to 11 years; and 200 mg daily for children aged 3 years or younger.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Localized demodectic mange is considered a common puppyhood ailment, with roughly 90% of cases resolving on their own with no treatment. Minor, localized cases should be left to resolve on their own to prevent masking of the more severe generalized form. If treatment is deemed necessary Goodwinol, a rotenone-based insecticide ointment is often prescribed, but it can be irritating to the skin. Demodectic mange with secondary infection is treated with antibiotics and medicated shampoos.
In more severe generalized cases, Amitraz is a parasiticidal dip that is licensed for use in many countries (the only FDA approved treatment in the USA) for treating canine demodicosis. It is applied weekly or biweekly, for several weeks, until no mites can be detected by skin scrapings. Demodectic mange in dogs can also be managed with avermectins, although there are few countries which license these drugs, which are given by mouth, daily, for this use. Ivermectin is used most frequently; collie-like herding breeds often do not tolerate this drug due to a defect in the blood–brain barrier, though not all of them have this defect. Other avermectin drugs that can be used include doramectin and milbemycin.
Recent results suggest that the isoxazolines afoxolaner and fluralaner, given orally, are effective in treating dogs with generalised demodicosis.
Cats with "Demodex gatoi" must be treated with weekly or bi-weekly sulfurated lime rinses. "Demodex cati" are treated similarly to canine demodicosis. With veterinary guidance, localized demodectic mange can also be treated with a topical keratolytic and antibacterial agent, followed by a lime sulfur drip or a local application of Rotenone. Ivermectin may also be used. Generalized demodectic mange in cats is more difficult to treat. There are shampoos available that can help to clear dead skin, kill mites and treat bacterial infections. Treatment is in most cases prolonged with multiple applications.
Because of the possibility of the immune deficiency being an inherited trait, many veterinarians believe that all puppies with generalized demodex should be spayed or neutered and not reproduce. Females with generalized demodex should be spayed because the stress of the estrus cycle will often bring on a fresh wave of clinical signs.
No specific treatment or cure exists. Affected children usually need total parenteral nutrition through a central venous catheter. Further worsening of liver damage should however be avoided if possible. Diarrhea will likely continue even though food stops passing through the gastrointestinal system. They can subsequently be managed with tube feeding, and some may be weaned from nutritional support during adolescence.
There is no cure or vaccine for HPS. Treatment involves supportive therapy, including mechanical ventilation with supplemental oxygen during the critical respiratory-failure stage of the illness. Early recognition of HPS and admission to an intensive care setting offers the best prognosis.
Research involving triacetin supplementation has shown promise in a rat model. Triacetin, which can be enzymatically cleaved to form acetate, enters the brain more readily than the negatively charged acetate. The defective enzyme in Canavan disease, aspartoacylase, converts N-acetylaspartate into aspartate and acetate. Mutations in the gene for aspartoacylase prevent the breakdown of N-acetylaspartate, and reduce brain acetate availability during brain development. Acetate supplementation using Triacetin is meant to provide the missing acetate so that brain development can continue normally.
A team of researchers headed by Paola Leone at the University of Medicine and Dentistry of New Jersey, has trialed a procedure involving the insertion of six (6) catheters into the brain that deliver a solution containing 600 billion to 900 billion engineered virus particles. The virus, a modified version of AAV, is designed to replace the aspartoacylase enzyme. Children treated with this procedure to date have shown marked improvements, including the growth of myelin, with decreased levels of the n-acetyl-aspartate toxin.
Currently, there is no proven, safe treatment for monkeypox. The people who have been infected can be vaccinated up to 14 days after exposure.
Dimercaprol and dimercaptosuccinic acid are chelating agents that sequester the arsenic away from blood proteins and are used in treating acute arsenic poisoning. The most important side effect is hypertension. Dimercaprol is considerably more toxic than succimer.
DMSA monoesters, e.g. MiADMSA, are promising antidotes for arsenic poisoning. Calcium sodium edetate is also used.
Common treatments for Dercum's disease is directed towards treating the individual symptoms. Pain relief medication may be administered to temporarily reduce the discomfort in the patient. Cortisone shots have also been shown to be effective in temporarily reducing the chronic pain. Surgical removal of the damaged adipose tissue can be effective, but often the disease will recur. Once a person has Dercum's disease then they will likely have pain for the rest of their life. Studies have only shown temporary pain relief in patients. Long term the person with Dercum's disease will need to take prescription drugs for pain relief to ensure quality of life. The disease will cause chronic and severe pain for the rest of a persons life. There are several holistic treatments for this disease. Acupuncture, hypnosis and cognitive behavior therapy have been attempted to help people with Dercum's disease.
Few convincing large studies on the treatment of Dercum's disease have been conducted. Most of the different treatment strategies that exist are based on case reports. Currently, there is a lack of scientific data on the use of integrative therapies for the treatment or prevention of Dercum's disease. Not enough studies have been done to substantiate that diet and supplements could help with the disease.
Treatment methods include the following modalities: