Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A preoperative pulmonology consultation is needed. The anesthesia team should
be aware that patients may have postoperative pulmonary complications as part
of the syndrome.
Preoperative hematology consultation is advisable prior to elective ocular
surgeries. Since patients with the syndrome have bleeding tendencies,
intraoperative, perioperative, and postoperative hemorrhages should be
prevented and treated. If platelet aggregation improves with desmopressin, it
may be administered in the preoperative period. However, sometimes
plasmapheresis is needed in the perioperative period.
Ophthalmologists should try to avoid retrobulbar blocks in patients with the
syndrome. Whenever possible, patients with HPS may benefit from general
endotracheal anesthesia. Phacoemulsification may help prevent intraoperative
and postoperative bleeding in patients with the syndrome. Prolonged bleeding
has been reported following strabismus surgery in patients with the syndrome.
Treatment is symptomatic and may include nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids to reduce swelling, antibiotics and immunosuppressants. Surgery may be indicated to relieve pressure on the facial nerves and reduce swelling, but its efficacy is uncertain. Massage and electrical stimulation may also be prescribed.
While there is no cure for HPS, treatment for chronic hemorrhages associated with the disorder includes therapy with vitamin E and the antidiuretic dDAVP.
The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.
Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.
Available treatments address the symptoms of CCD, not the underlying defect. Early diagnosis and aggressive salt replacement therapy result in normal growth and development, and generally good outcomes. Replacement of NaCl and KCl has been shown to be effective in children.
A potential treatment is butyrate.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
No specific cure is known. Treatment is largely supportive. Nonsteroidal anti-inflammatory drugs (NSAIDs) are indicated for tender lymph nodes and fever, and corticosteroids are useful in severe extranodal or generalized disease.
Symptomatic measures aimed at relieving the distressing local and systemic complaints have been described as the main line of management of KFD. Analgesics, antipyretics, NSAIDs, and corticosteroids have been used. If the clinical course is more severe, with multiple flares of bulky enlarged cervical lymph nodes and fever, then a low-dose corticosteroid treatment has been suggested.
Frequent blood transfusions are given in the first year of life to treat anemia. Prednisone may be given, although this should be avoided in infancy because of side effects on growth and brain development. A bone marrow transplant may be necessary if other treatment fails.
treatment of HP resemble that of chronic pancreatitis of other causes. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction.(PMC1774562)
A 2009 study which followed 189 patients found no excess mortality despite the increased risk of pancreatic cancer.
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
TSC typically affects multiple organ systems and manifests differently in each patient and in different stages of the life course. Drug therapy, surgery, and other interventions can be effective in managing some of the manifestations and symptoms of TSC.
In the United States, the Food and Drug Administration has approved several drugs for managing some of the major manifestations of TSC. The antiepileptic medication vigabatrin was approved in 2009 for treatment of infantile spasms and was recommended as first-line therapy for infantile spasms in children with TSC by the 2012 International TSC Consensus Conference. Adrenocorticotropic hormone was approved in 2010 to treat infantile spasms. Everolimus was approved for treatment of TSC-related tumors in the brain (subependymal giant cell astrocytoma) in 2010 and in the kidneys (renal angiomyolipoma) in 2012. Everolimus also showed evidence of effectiveness at treating epilepsy in some people with TSC. In 2017, the European Commission approved everolimus for treatment of refractory partial-onset seizures associated with TSC.
Neurosurgical intervention may reduce the severity and frequency of seizures in TSC patients. Embolization and other surgical interventions can be used to treat renal angiomyolipoma with acute hemorrhage. Surgical treatments for symptoms of lymphangioleiomyomatosis (LAM) in adult TSC patients include pleurodesis to prevent pneumothorax and lung transplantation in the case of irreversible lung failure.
Other treatments that have been used to treat TSC manifestations and symptoms include a ketogenic diet for intractable epilepsy and pulmonary rehabilitation for LAM.
Treatment consists of immunoglobulin replacement therapy, which replenishes Ig subtypes that the person lack. This treatment is given at frequent intervals for life, and is thought to help reduce bacterial infections and boost immune function. Before therapy begins, plasma donations are tested for known blood-borne pathogens, then pooled and processed to obtain concentrated IgG samples. Infusions can be administered in three different forms: intravenously (IVIg):, subcutaneously (SCIg), and intramuscularly (IMIg).
The administration of intravenous immunoglobulins requires the insertion of a cannula or needle in a vein, usually in the arms or hands. Because highly concentrated product is used, IVIg infusions take place every 3 to 4 weeks. Subcutaneous infusions slowly release the Ig serum underneath the skin, again through a needle, and takes place every week. Intramuscular infusions are no longer widely used, as they can be painful and are more likely to cause reactions.
People often experience adverse side effects to immunoglobulin infusions, including:
- swelling at the insertion site (common in SCIG)
- chills
- headache
- nausea (common in IVIG)
- fatigue (common in IVIG)
- muscle aches and pain, or joint pain
- fever (common in IVIG and rare in SCIG)
- hives (rare)
- thrombotic events (rare)
- aseptic meningitis (rare, more common in people with SLE)
- anaphylactic shock (very rare)
In addition to Ig replacement therapy, treatment may also involve immune suppressants, to control autoimmune symptoms of the disease, and high dose steroids like corticosteroids. In some cases, antibiotics are used to fight chronic lung disease resulting from CVID. The outlook for people varies greatly depending on their level of lung and other organ damage prior to diagnosis and treatment.
Treatment can involve operations to lengthen the leg bones, which involves many visits to the hospital. Other symptoms can be treated with medicine or surgery. Most female patients with the syndrome can live a long and normal life, while males have only survived in rare cases.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Most people with Takayasu’s arteritis respond to steroids such as prednisone. The usual starting dose is approximately 1 milligram per kilogram of body weight per day (for most people, this is approximately 60 milligrams a day). Because of the significant side effects of long-term high-dose prednisone use, the starting dose is tapered over several weeks to a dose which controls symptoms while limiting the side effects of steroids.
Promising results are achieved with mycophenolate and tocilizumab. If treatment is not kept to a high standard, long-term damage or death can occur.
For patients who do not respond to steroids may require revascularization, either via vascular bypass or angioplasty and stenting. Outcomes following revascularization vary depending on the severity of the underlying disease
As with most genetic diseases there is no way to prevent the entire disease. With prompt recognition and treatment of infections in childhood, the complications of low white blood cell counts may be limited.
There is no cure for Alström syndrome; however, there are treatment aims to reduce the symptoms and prevent further complications. Some of these treatment aims include:
- Corrective lenses: tinted lenses that help with the sensitivity from bright lights. The patients may have to adapt to reading in Braille, use adaptive equipment, mobility aids, and adaptive computing skills.
- Education: patients with Alström syndrome suffering from intellectual disabilities must have access to education. They must be able to receive free and appropriate education. Some Alström syndrome patients are educated in normal classrooms. Other patients have to take special education classes or attend to specialized schools that are prepared to teach children with disabilities. Staff members from schools have to consult with patient's parents or caregivers in order to design an education plan based on the child's needs. In addition, the school may document the progress of the child in order to confirm that the child's needs are being met.
- Hearing aids: the battery-operated devices are available in three styles: behind the ear, in the ear, and inside the ear canal. Behind the ear aims for mild-to-profound hearing loss. In the ear aims for mild to severe hearing loss. Lastly, the canal device is aimed for mild to moderately severe hearing loss. Patients that have severe hearing loss may benefit from a cochlear implant.
- Diet: an appropriate and healthy diet is necessary for individuals with Alström syndrome because it could potentially decreases chances of obesity or diabetes.
- Occupational therapy: the therapist helps the child learn skills to help him or her perform basic daily tasks like eating, getting dressed, and communicating with others.
- Physical Activity: exercising reduces chances of being obese and helping control blood sugar levels.
- Dialysis: helps restore filtering function. With hemodialysis, a patient's blood circulates into an external filter and clean. The filtered blood is then returned into the body. With peritoneal dialysis, fluid containing dextrose is introduced into the abdomen by a tube. The solution then absorbs the wastes into the body and is then removed.
- Transplantation: patients that endure a kidney failure may undergo a kidney transplantation.
- Surgery: if the patient endures severe scoliosis or kyphosis, surgery may be required.
The most common method to manage hypoglycemia and diabetes is with an insulin pump. . However in infants and very young children long acting insulins like Glargine and Levemir are preferred to prevent recurrent hypoglycemia . As soon as parent knows Walcott-Rallison syndrome is the source, treatment or therapy plans need to be drawn up along with frequent check ins to make sure kidney and liver functions are around normal and insulin therapy are working. If needed, the patient can undergo thyroxin therapy in order to maintain proper thyroid stimulating hormone levels. This has only been needed in a few cases were hypothyroidism was present in the patient.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
The main treatment is symptomatic, since the underlying genetic defect cannot be corrected as of 2015. Symptomatic treatment is surgical.
Treatments for ichthyosis often take the form of topical application of creams and emollient oils, in an attempt to hydrate the skin. Creams containing lactic acid have been shown to work exceptionally well in some cases. Application of propylene glycol is another treatment method. Retinoids are used for some conditions.
Exposure to sunlight may improve or worsen the condition. In some cases, excess dead skin sloughs off much better from wet tanned skin after bathing or a swim, although the dry skin might be preferable to the damaging effects of sun exposure.
There can be ocular manifestations of ichthyosis, such as corneal and ocular surface diseases. Vascularizing keratitis, which is more commonly found in congenital keratitis-ichythosis-deafness (KID), may worsen with isotretinoin therapy.
There is no cure for GSS, nor is there any known treatment to slow the progression of the disease. However, therapies and medication are aimed at treating or slowing down the effects of the symptoms. Their goal is to try to improve the patient's quality of life as much as possible. Despite there being no cure for GSS, it is possible to undergo testing for the presence of the underlying genetic mutation. Testing for GSS involves a blood and DNA examination in order to attempt to detect the mutated gene at certain codons. If the genetic mutation is present, the patient will eventually be afflicted by GSS, and, due to the genetic nature of the disease, the offspring of the patient are predisposed to a higher risk of inheriting the mutation.
As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.
There is no proven treatment for congenital lactic acidosis. Treatments that are occasionally used or that are under investigation include the ketogenic diet and dichloroacetate. Other treatments aim to relieve symptoms – for example, anticonvulsants may be used to relieve seizures.