Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
A Cochrane review comparing pirfenidone with placebo, found a reduced risk of disease progression by 30%. FVC or VC was also improved, even if a mild slowing in FVC decline could be demonstrated only in one of the two CAPACITY trials. A third study, which was completed in 2014 found reduced decline in lung function and IPF disease progression. The data from the ASCEND study were also pooled with data from the two CAPACITY studies in a pre-specified analysis which showed that pirfenidone reduced the risk of death by almost 50% over one year of treatment.
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
The administration of fluid therapy in individuals with pulmonary contusion is controversial. Excessive fluid in the circulatory system (hypervolemia) can worsen hypoxia because it can cause fluid leakage from injured capillaries (pulmonary edema), which are more permeable than normal. However, low blood volume (hypovolemia) resulting from insufficient fluid has an even worse impact, potentially causing hypovolemic shock; for people who have lost large amounts of blood, fluid resuscitation is necessary. A lot of the evidence supporting the idea that fluids should be withheld from people with pulmonary contusion came from animal studies, not clinical trials with humans; human studies have had conflicting findings on whether fluid resuscitation worsens the condition. Current recommendations suggest giving enough fluid to ensure sufficient blood flow but not giving any more fluid than necessary. For people who do require large amounts of intravenous fluid, a catheter may be placed in the pulmonary artery to measure the pressure within it. Measuring pulmonary artery pressure allows the clinician to give enough fluids to prevent shock without exacerbating edema. Diuretics, drugs that increase urine output to reduce excessive fluid in the system, can be used when fluid overload does occur, as long as there is not a significant risk of shock. Furosemide, a diuretic used in the treatment of pulmonary contusion, also relaxes the smooth muscle in the veins of the lungs, thereby decreasing pulmonary venous resistance and reducing the pressure in the pulmonary capillaries.
No treatment is known to speed the healing of a pulmonary contusion; the main care is supportive. Attempts are made to discover injuries accompanying the contusion, to prevent additional injury, and to provide supportive care while waiting for the contusion to heal. Monitoring, including keeping track of fluid balance, respiratory function, and oxygen saturation using pulse oximetry is also required as the patient's condition may progressively worsen. Monitoring for complications such as pneumonia and acute respiratory distress syndrome is of critical importance. Treatment aims to prevent respiratory failure and to ensure adequate blood oxygenation. Supplemental oxygen can be given and it may be warmed and humidified. When the contusion does not respond to other treatments, extracorporeal membranous oxygenation may be used, pumping blood from the body into a machine that oxygenates it and removes carbon dioxide prior to pumping it back in.
Preventing alveolar overdistension – Alveolar overdistension is mitigated by using small tidal volumes, maintaining a low plateau pressure, and most effectively by using volume-limited ventilation.
Preventing cyclic atelectasis (atelectotrauma) – Applied positive end-expiratory pressure (PEEP) is the principal method used to keep the alveoli open and lessen cyclic atelectasis.
Open lung ventilationn – Open lung ventilation is a ventilatory strategy that combines small tidal volumes (to lessen alveolar overdistension) and an applied PEEP above the low inflection point on the pressure-volume curve (to lessen cyclic atelectasis).
High frequency ventilation is thought to reduce ventilator-associated lung injury, especially in the context of ARDS and acute lung injury.
Permissive hypercapnia and hypoxaemia allow the patient to be ventilated at less aggressive settings and can thererfore mitigate all forms of ventilator associated lung injury
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
Radiation (radiotherapy) is frequently used for the treatment of many cancer types, and can be highly effective. Unfortunately, it also can lead to pulmonary toxicity as a side effect.
Radiotherapists are well aware of possible pulmonary toxicity, and take a number of precautions to minimise the incidence of this side effect. There are research efforts to possibly eliminate this side effect in the future.
Supportive care is the mainstay of therapy in TRALI. Oxygen supplementation is employed in all reported cases of TRALI and aggressive respiratory support is needed in 72 percent of patients. Intravenous administration of fluids, as well as vasopressors, are essential for blood pressure support. Use of diuretics, which are indicated in the management of transfusion associated circulatory overload (TACO), should be avoided in TRALI. Corticosteroids can be beneficial.
Within all classes of medicinal drugs that possibly can lead to pulmonary toxicity as a side effect, most pulmonary toxicity is due to chemotherapy for cancer.
Many medicinal drugs can lead to pulmonary toxicity. A few medicinal drugs can lead to pulmonary toxicity frequently (in medicine defined by international regulatory authorities such as the U.S. Food and Drug Administration and the EMEA [European Union] as > 1% and 10%). These medicinal drugs can include gold and nitrofurantoin, as well as the following drugs used in chemotherapy for cancer: Methotrexate, the taxanes (paclitaxel and docetaxel), gemcitabine, bleomycin, mitomycin C, busulfan, cyclophosphamide, chlorambucil, and nitrosourea (e.g., carmustine).
Also, some medicinal drugs used in cardiovascular medicine can lead to pulmonary toxicity frequently or very frequently. These include above all amiodarone, as well as beta blockers, ACE inhibitors (however, pulmonary toxicity of ACE inhibitors usually lasts only 3–4 months and then usually disappears by itself), procainamide, quinidine, tocainide, and minoxidil.
Both oncologists and cardiologists are well aware of possible pulmonary toxicity.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
Full recovery is common with proper treatment. Pulmonary laceration usually heals quickly after a chest tube is inserted and is usually not associated with major long-term problems. Pulmonary lacerations usually heal within three to five weeks, and lacerations filled with air will commonly heal within one to three weeks but on occasion take longer. However, the injury often takes weeks or months to heal, and the lung may be scarred. Small pulmonary lacerations frequently heal by themselves if material is removed from the pleural space, but surgery may be required for larger lacerations that do not heal properly or that bleed.
Small spontaneous pneumothoraces do not always require treatment, as they are unlikely to proceed to respiratory failure or tension pneumothorax, and generally resolve spontaneously. This approach is most appropriate if the estimated size of the pneumothorax is small (defined as <50% of the volume of the hemithorax), there is no breathlessness, and there is no underlying lung disease. It may be appropriate to treat a larger PSP conservatively if the symptoms are limited. Admission to hospital is often not required, as long as clear instructions are given to return to hospital if there are worsening symptoms. Further investigations may be performed as an outpatient, at which time X-rays are repeated to confirm improvement, and advice given with regard to preventing recurrence (see below). Estimated rates of resorption are between 1.25% and 2.2% the volume of the cavity per day. This would mean that even a complete pneumothorax would spontaneously resolve over a period of about 6 weeks. There is, however, no high quality evidence comparing conservative to non conservative management.
Secondary pneumothoraces are only treated conservatively if the size is very small (1 cm or less air rim) and there are limited symptoms. Admission to the hospital is usually recommended. Oxygen given at a high flow rate may accelerate resorption as much as fourfold.
The treatment of pneumothorax depends on a number of factors, and may vary from discharge with early follow-up to immediate needle decompression or insertion of a chest tube. Treatment is determined by the severity of symptoms and indicators of acute illness, the presence of underlying lung disease, the estimated size of the pneumothorax on X-ray, and – in some instances – on the personal preference of the person involved.
In traumatic pneumothorax, chest tubes are usually inserted. If mechanical ventilation is required, the risk of tension pneumothorax is greatly increased and the insertion of a chest tube is mandatory. Any open chest wound should be covered with an airtight seal, as it carries a high risk of leading to tension pneumothorax. Ideally, a dressing called the "Asherman seal" should be utilized, as it appears to be more effective than a standard "three-sided" dressing. The Asherman seal is a specially designed device that adheres to the chest wall and, through a valve-like mechanism, allows air to escape but not to enter the chest.
Tension pneumothorax is usually treated with urgent needle decompression. This may be required before transport to the hospital, and can be performed by an emergency medical technician or other trained professional. The needle or cannula is left in place until a chest tube can be inserted. If tension pneumothorax leads to cardiac arrest, needle decompression is performed as part of resuscitation as it may restore cardiac output.
Acute cardiogenic pulmonary edema often responds rapidly to medical treatment. Positioning upright may relieve symptoms. Loop diuretics such as furosemide or bumetanide are administered, often together with morphine or diamorphine to reduce respiratory distress. Both diuretics and morphine may have vasodilator effects, but specific vasodilators may be used (particularly intravenous glyceryl trinitrate or ISDN) provided the blood pressure is adequate.
Continuous positive airway pressure and bilevel positive airway pressure (BIPAP/NIPPV) has been demonstrated to reduce the need of mechanical ventilation in people with severe cardiogenic pulmonary edema, and may reduce mortality.
It is possible for cardiogenic pulmonary edema to occur together with cardiogenic shock, in which the cardiac output is insufficient to sustain an adequate blood pressure. This can be treated with inotropic agents or by intra-aortic balloon pump, but this is regarded as temporary treatment while the underlying cause is addressed.
The initial management of pulmonary edema, irrespective of the type or cause, is supporting vital functions. Therefore, if the level of consciousness is decreased it may be required to proceed to tracheal intubation and mechanical ventilation to prevent airway compromise. Hypoxia (abnormally low oxygen levels) may require supplementary oxygen, but if this is insufficient then again mechanical ventilation may be required to prevent complications. Treatment of the underlying cause is the next priority; pulmonary edema secondary to infection, for instance, would require the administration of appropriate antibiotics.
The primary medications for lung barotrauma are oxygen, oxygen-helium or nitrox, isotonic fluids, anti-inflammatory medications, decongestants, and analgesics.
As with other chest injuries such as pulmonary contusion, hemothorax, and pneumothorax, pulmonary laceration can often be treated with just supplemental oxygen, ventilation, and drainage of fluids from the chest cavity. A thoracostomy tube can be used to remove blood and air from the chest cavity. About 5% of cases require surgery, called thoracotomy. Thoracotomy is especially likely to be needed if a lung fails to re-expand; if pneumothorax, bleeding, or coughing up blood persist; or in order to remove clotted blood from a hemothorax. Surgical treatment includes suturing, stapling, oversewing, and wedging out of the laceration. Occasionally, surgeons must perform a lobectomy, in which a lobe of the lung is removed, or a pneumonectomy, in which an entire lung is removed.
Treatment of TBI varies based on the location and severity of injury and whether the patient is stable or having trouble breathing, but ensuring that the airway is patent so that the patient can breathe is always of paramount importance. Ensuring an open airway and adequate ventilation may be difficult in people with TBI. Intubation, one method to secure the airway, may be used to bypass a disruption in the airway in order to send air to the lungs. If necessary, a tube can be placed into the uninjured bronchus, and a single lung can be ventilated. If there is a penetrating injury to the neck through which air is escaping, the trachea may be intubated through the wound. Multiple unsuccessful attempts at conventional (direct) laryngoscopy may threaten the airway, so alternative techniques to visualize the airway, such as fiberoptic or video laryngoscopy, may be employed to facilitate tracheal intubation. If the upper trachea is injured, an incision can be made in the trachea (tracheotomy) or the cricothyroid membrane (cricothyrotomy, or cricothyroidotomy) in order to ensure an open airway. However, cricothyrotomy may not be useful if the trachea is lacerated below the site of the artificial airway. Tracheotomy is used sparingly because it can cause complications such as infections and narrowing of the trachea and larynx. When it is impossible to establish a sufficient airway, or when complicated surgery must be performed, cardiopulmonary bypass may be used—blood is pumped out of the body, oxygenated by a machine, and pumped back in. If a pneumothorax occurs, a chest tube may be inserted into the pleural cavity to remove the air.
People with TBI are provided with supplemental oxygen and may need mechanical ventilation. Employment of certain measures such as Positive end-expiratory pressure (PEEP) and ventilation at higher-than-normal pressures may be helpful in maintaining adequate oxygenation. However, such measures can also increase leakage of air through a tear, and can stress the sutures in a tear that has been surgically repaired; therefore the lowest possible airway pressures that still maintain oxygenation are typically used. Mechanical ventilation can also cause pulmonary barotrauma when high pressure is required to ventilate the lungs. Techniques such as pulmonary toilet (removal of secretions), fluid management, and treatment of pneumonia are employed to improve pulmonary compliance (the elasticity of the lungs).
While TBI may be managed without surgery, surgical repair of the tear is considered standard in the treatment of most TBI. It is required if a tear interferes with ventilation; if mediastinitis (inflammation of the tissues in the mid-chest) occurs; or if subcutaneous or mediastinal emphysema progresses rapidly; or if air leak or large pneumothorax is persistent despite chest tube placement. Other indications for surgery are a tear more than one third the circumference of the airway, tears with loss of tissue, and a need for positive pressure ventilation. Damaged tissue around a rupture (e.g. torn or scarred tissue) may be removed in order to obtain clean edges that can be surgically repaired. Debridement of damaged tissue can shorten the trachea by as much as 50%. Repair of extensive tears can include sewing a flap of tissue taken from the membranes surrounding the heart or lungs (the pericardium and pleura, respectively) over the sutures to protect them. When lung tissue is destroyed as a result of TBI complications, pneumonectomy or lobectomy (removal of a lung or of one lobe, respectively) may be required. Pneumonectomy is avoided whenever possible due to the high rate of death associated with the procedure. Surgery to repair a tear in the tracheobronchial tree can be successful even when it is performed months after the trauma, as can occur if the diagnosis of TBI is delayed. When airway stenosis results after delayed diagnosis, surgery is similar to that performed after early diagnosis: the stenotic section is removed and the cut airway is repaired.
Pulmonary barotrauma:
- Endotracheal intubation may be required if the airway is unstable or hypoxia persists when breathing 100% oxygen.
- Needle decompression or tube thoracostomy may be necessary to drain a pneumothorax or haemothorax
- Foley catheterization may be necessary for spinal cord AGE if the person is unable to urinate.
- Intravenous hydration may be required to maintain adequate blood pressure.
- Therapeutic recompression is indicated for severe AGE. The diving medical practitioner will need to know the vital signs and relevant symptoms, along with the recent pressure exposure and breathing gas history of the patient. Air transport should be below if possible, or in a pressurized aircraft which should be pressurised to as low an altitude as reaonably possible.
Sinus squeeze and middle ear squeeze are generally treated with decongestants to reduce the pressure differential, with anti-inflammatory medications to treat the pain. For severe pain, narcotic analgesics may be appropriate.
Suit, helmet and mask squeeze are treated as trauma according to symptoms and severity.
VALI does not need to be distinguished from progressive ALI/ARDS because management is the same in both. Additionally, definitive diagnosis of VALI may not be possible because of lack of sign or symptoms.
Treatment depends on the underlying cause of the pleural effusion.
Therapeutic aspiration may be sufficient; larger effusions may require insertion of an intercostal drain (either pigtail or surgical). When managing these chest tubes, it is important to make sure the chest tubes do not become occluded or clogged. A clogged chest tube in the setting of continued production of fluid will result in residual fluid left behind when the chest tube is removed. This fluid can lead to complications such as hypoxia due to lung collapse from the fluid, or fibrothorax if scarring occurs. Repeated effusions may require chemical (talc, bleomycin, tetracycline/doxycycline), or surgical pleurodesis, in which the two pleural surfaces are scarred to each other so that no fluid can accumulate between them. This is a surgical procedure that involves inserting a chest tube, then either mechanically abrading the pleura or inserting the chemicals to induce a scar. This requires the chest tube to stay in until the fluid drainage stops. This can take days to weeks and can require prolonged hospitalizations. If the chest tube becomes clogged, fluid will be left behind and the pleurodesis will fail.
Pleurodesis fails in as many as 30% of cases. An alternative is to place a PleurX Pleural Catheter or Aspira Drainage Catheter. This is a 15Fr chest tube with a one-way valve. Each day the patient or care givers connect it to a simple vacuum tube and remove from 600 to 1000 mL of fluid, and can be repeated daily. When not in use, the tube is capped. This allows patients to be outside the hospital. For patients with malignant pleural effusions, it allows them to continue chemotherapy, if indicated. Generally, the tube is in for about 30 days and then it is removed when the space undergoes a spontaneous pleurodesis.
Given the constant threat of bioterrorist related events, there is an urgent need to develop pulmonary protective and reparative agents that can be used by first responders in a mass casualty setting. Use in such a setting would require administration via a convenient route for e.g. intramuscular via epipens. Other feasible routes of administration could be inhalation and perhaps to a lesser extent oral – swallowing can be difficult in many forms of injury especially if accompanied by secretions or if victim is nauseous. A number of in vitro and in vivo models lend themselves to preclinical evaluation of novel pulmonary therapies.