Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In unvaccinated humans, rabies is almost always fatal after neurological symptoms have developed.
Vaccination after exposure, PEP, is highly successful in preventing the disease if administered promptly, in general within 6 days of infection. Begun with little or no delay, PEP is 100% effective against rabies. In the case of significant delay in administering PEP, the treatment still has a chance of success.
Five of the first 43 patients (12%) treated with the Milwaukee protocol survived, and those receiving treatment survived longer than those not receiving the treatment.
Treatment after exposure can prevent the disease if administered promptly, generally within 10 days of infection. Thoroughly washing the wound as soon as possible with soap and water for approximately five minutes is effective in reducing the number of viral particles. Povidone-iodine or alcohol is then recommended to reduce the virus further.
In the US, the Centers for Disease Control and Prevention recommends people receive one dose of human rabies immunoglobulin (HRIG) and four doses of rabies vaccine over a 14-day period. The immunoglobulin dose should not exceed 20 units per kilogram body weight. HRIG is expensive and constitutes most of the cost of post exposure treatment, ranging as high as several thousand dollars. As much as possible of this dose should be injected around the bites, with the remainder being given by deep intramuscular injection at a site distant from the vaccination site.
The first dose of rabies vaccine is given as soon as possible after exposure, with additional doses on days 3, 7 and 14 after the first. Patients who have previously received pre-exposure vaccination do not receive the immunoglobulin, only the postexposure vaccinations on days 0 and 3.
The pain and side effects of modern cell-based vaccines are similar to flu shots. The old nerve-tissue-based vaccinations that require multiple painful injections into the abdomen with a large needle are inexpensive, but are being phased out and replaced by affordable World Health Organization intradermal-vaccination regimens.
Intramuscular vaccination should be given into the deltoid, not the gluteal area, which has been associated with vaccination failure due to injection into fat rather than muscle. In infants, the lateral thigh is recommended.
Awakening to find a bat in the room, or finding a bat in the room of a previously unattended child or mentally disabled or intoxicated person, is an indication for post-exposure prophylaxis (PEP). The recommendation for the precautionary use of PEP in bat encounters where no contact is recognized has been questioned in the medical literature, based on a cost–benefit analysis. However, a 2002 study has supported the protocol of precautionary administering of PEP where a child or mentally compromised individual has been alone with a bat, especially in sleep areas, where a bite or exposure may occur without the victim being aware. Begun with little or no delay, PEP is 100% effective against rabies. In the case in which there has been a significant delay in administering PEP, the treatment should be administered regardless, as it may still be effective. Every year, more than 15 million people get vaccination after potential exposure. While this works well, the cost is significant.
In Haiti, few cases of human rabies are reported to health authorities. In 2016, a report of a woman who had been exposed to rabies three months prior and was showing symptoms went to the hospital where no treatment was administered to her. Even after being reported to both the CDC and the national Department of Epidemiology and Laboratory Research (DELR), as required by Haiti's surveillance program, the woman ended up passing away. This goes to show the lack of communication and effectiveness in caring for human subjects in Haiti, and the continued focus is on eliminating dog-mediated rabies altogether.
Human diploid cell culture rabies vaccine (HDCV) and purified chick embryo cell culture rabies vaccine (PCEC) are used to treat post-exposure immunization against a human rabies infection. Recommendations for treatment are given by governmental health care organizations and in health literature. Health care providers are encouraged to administer a regimen of four 1-mL doses of HDCV or PCEC vaccines. According to the CDC, these injections should be administered intramuscularly to persons who have not yet been vaccinated for rabies.
For those who are unvaccinated, the first of four doses is administered immediately after exposure to the rabies virus. Additional doses are given three, seven, and fourteen days after the first vaccination. Exposure usually means a bite from a rabid animal.
At an individual patient level, post-exposure prophylaxis (PEP) consists of local treatment of the wound, vaccination, and administration of immunoglobulin, if necessary [3]. At the program level, several components are critical, including: adequate and prompt recognition of the need for PEP by the public, if exposed, and by health officials, prompt and sufficient availability of high-quality PEP, and adequate follow-up of PEP use. Health officials' awareness of the need for PEP after a dog bite can only be achieved if the exposure is attended to immediately and communicated effectively.
There is currently no specific treatment for Zika virus infection. Care is supportive with treatment of pain, fever, and itching. Some authorities have recommended against using aspirin and other NSAIDs as these have been associated with hemorrhagic syndrome when used for other flaviviruses. Additionally, aspirin use is generally avoided in children when possible due to the risk of Reye syndrome.
Zika virus had been relatively little studied until the major outbreak in 2015, and no specific antiviral treatments are available as yet. Advice to pregnant women is to avoid any risk of infection so far as possible, as once infected there is little that can be done beyond supportive treatment.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
As for other flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Different methods for acute treatment of the disease have been shown not to be very successful; passive immunisation after emergence of symptoms is probably without effect. Ribavirin and other antiviral drugs, as well as treatment with interferons, do not have a positive effect in patients.
A symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen in the United States). Acetylsalicylic acid (aspirin) should not be given because of its anticoagulant effect, which can be devastating in the case of internal bleeding that can occur with yellow fever.
Most of the time, Zika fever resolves on its own in 2 to 7 days, but rarely, some people develop Guillain–Barré syndrome. The fetus of a pregnant woman who has Zika fever may die or be born with congenital central nervous system malformations, like microcephaly.
Fortunately, severe systemic reaction to vaccine allergy is very rare in dogs. When it does occur, however, anaphylaxis is a life-threatening emergency. More often, dogs will develop urticaria, or hives within minutes of receiving a vaccine. When this occurs, a veterinarian will treat the reaction with antihistamines and corticosteroid drugs and this is usually effective. Future vaccine protocols must be modified according to the vaccine component suspected to have triggered the reaction.
Development of new therapies has been hindered by the lack of appropriate animal model systems for some important viruses and also because of the difficulty in conducting human clinical trials for diseases that are rare. Nonetheless, numerous innovative approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpes virus drugs include viral helicase-primase and terminase inhibitors. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Empirical treatment should generally be started in a patient in whom suspicion of diphtheria is high.
Quinvaxem is a widely administered pentavalent vaccine, which is a combination of five vaccines in one that protect babies from diphtheria, among other common childhood diseases. Diphtheria vaccine is usually combined at least with tetanus vaccine (Td) and often with pertussis (DTP, DTaP, TdaP) vaccines, as well.
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
Globally, 59,000 people die from rabies each year. This is the equivalent of one person dying every nine minutes, with half of the people who die from rabies being under the age of 15. The Pan American Health Organization (PAHO) and the Pan American Center of foot-and-mouth disease (PANAFTOSA) led a mission to eliminate dog-mediated rabies in the American region by 2015. These organizations are cognizant of the regional control of rabies. The PAHO and PANAFTOSA visited Haiti in early December, 2013, and the objectives of the mission were to assess the status of Haiti’s rabies program as delivered by the Haitian Ministry of Agriculture, Natural Resources and Rural Development (MARNDR) and the Ministry of Health (MSPP). The mission was to seek opportunities for collaboration between Haiti, Brazil, and the Centers for Disease Control and Prevention (CDC) in Haiti.
Even in 2017, rabies in Haiti is still identified as a national problem, even with PEP proposed.
The first step in treatment includes washing and then irrigating the bite wound.
Seek medical attention if: if the cat has not been vaccinated against rabies.
A tetanous booster is given to the person if It has been more than 5 years since their last tetanus shot. If a cat has bitten someone, and there is no evidence that the cat has been vaccinated against rabies, the person will be treated for rabies infection.
Vaccines should be given in specific areas in order to: ease identification of which vaccine caused an adverse reaction, and ease removal of any vaccine-associated sarcoma.
In North America, vets adopted the practice of injecting specific limbs as far from the body as possible, with the rear "right for rabies", the rear "left for leukemia", and the right front shoulder (being careful to avoid the midline or interscapular space) for other vaccines (such as FVRCP).
This set of locations was not widely adopted outside of North America, and the international Vaccination Guidelines Group (VGG) made new recommendations that vaccines be administered:
- in subcutaneous (and not intramuscular) sites
- in the skin of the lateral thorax or abdomen (for easier excision of any FISS that occur)
- avoid the interscapular or intercostal regions (as more extensive surgical resection would be needed for sarcomas)
- in a different site on each occasion (either with general locations per species per year or diagrams of where administered on specific visit)
In pet rabbits, myxomatosis can be misdiagnosed as pasteurellosis, a bacterial infection which can be treated with antibiotics. By contrast, there is no treatment for rabbits suffering from myxomatosis, other than palliative care to ease the suffering of individual animals, and the treatment of secondary and opportunistic infections, in the hopes the treated animal will survive. In practice, the owner is often urged to euthanize the animal to end its suffering.
Cat bites can often be prevented by:
- instructing children not to tease cats or other pets.
- being cautious with unfamiliar cats.
- approaching cats with care, even if they appear to be friendly.
- avoiding rough play with cats and kittens.
Rough play causes is perceived as aggressive. This will lead to the cat being defensive when approached by people. Preventing cat bites includes not provoking the cat.
Rabies can be contracted in horses if they interact with rabid animals in their pasture, usually being bitten on the muzzle or lower limbs. Signs include aggression, incoordination, head-pressing, circling, lameness, muscle tremors, convulsions, colic and fever. Horses that experience the paralytic form of rabies have difficulty swallowing, and drooping of the lower jaw due to paralysis of the throat and jaw muscles. Incubation of the virus may range from 2–9 weeks. Death often occurs within 4–5 days of infection of the virus. There are no effective treatments for rabies in horses. Veterinarians recommend an initial vaccination as a foal at three months of age, repeated at one year and given an annual booster.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
Rabies is a viral zoonotic neuroinvasive disease which causes inflammation in the brain and is usually fatal. Rabies, caused by the rabies virus, primarily infects mammals. In the laboratory it has been found that birds can be infected, as well as cell cultures from birds, reptiles and insects. Animals with rabies suffer deterioration of the brain and tend to behave bizarrely and often aggressively, increasing the chances that they will bite another animal or a person and transmit the disease. Most cases of humans contracting the disease from infected animals are in developing nations. In 2010, an estimated 26,000 people died from rabies, down from 54,000 in 1990.
ILI occurs in some horses after intramuscular injection of vaccines. For these horses, light exercise speeds resolution of the ILI. Non-steroidal anti-inflammatory drugs (NSAIDs) may be given with the vaccine.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
Vaccination is recommended for those traveling to affected areas, because non-native people tend to develop more severe illness when infected. Protection begins by the 10th day after vaccine administration in 95% of people, and had been reported to last for at least 10 years. WHO now states that a single dose of vaccination is sufficient to confer lifelong immunity against yellow fever disease." The attenuated live vaccine stem 17D was developed in 1937 by Max Theiler. The World Health Organization (WHO) recommends routine vaccinations for people living in affected areas between the 9th and 12th month after birth.
Up to one in four people experience fever, aches, and local soreness and redness at the site of injection. In rare cases (less than one in 200,000 to 300,000), the vaccination can cause yellow fever vaccine–associated viscerotropic disease, which is fatal in 60% of cases. It is probably due to the genetic morphology of the immune system. Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease, which can lead to meningoencephalitis and is fatal in less than 5% of cases.
The Yellow Fever Initiative, launched by WHO in 2006, vaccinated more than 105 million people in 14 countries in West Africa. No outbreaks were reported during 2015. The campaign was supported by the GAVI Alliance, and governmental organizations in Europe and Africa. According to the WHO, mass vaccination cannot eliminate yellow fever because of the vast number of infected mosquitoes in urban areas of the target countries, but it will significantly reduce the number of people infected.
In March 2017, WHO launched a vaccination campaign in Brazil with 3.5 million doses from an emergency stockpile. In March 2017 the WHO recommended vaccination for travellers to certain parts of Brazil.
A "vaccine-preventable disease" is an infectious disease for which an effective preventive vaccine exists. If a person acquires a vaccine-preventable disease and dies from it, the death is considered a vaccine-preventable death.
The most common and serious vaccine-preventable diseases tracked by the World Health Organization (WHO) are: diphtheria, "Haemophilus influenzae" serotype b infection, hepatitis B, measles, meningitis, mumps, pertussis, poliomyelitis, rubella, tetanus, tuberculosis, and yellow fever. The WHO reports licensed vaccines being available to prevent, or contribute to the prevention and control of, 25 vaccine-preventable infections.