Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
Treatment of 3-M syndrome is aimed at the specific symptoms presented in each individual. With the various symptoms of this disorder being properly managed and affected individuals having normal mental development, 3-M syndrome is not a life - threatening condition and individuals are able to lead a near normal life with normal life expectancy.
Treatment may involve the coordinated efforts of many healthcare professionals, such as pediatricians, orthopedists, dentists and/or other specialists depending on the symptoms.
- Possible management options for short stature are surgical bone lengthening or growth hormone therapy.
- Orthopedic techniques and surgery may be used to treat certain skeletal abnormalities.
- Plastic surgery may also be performed on individuals to help correct certain cranio-facial anomalies.
- Individuals with dental abnormalities may undergo corrective procedures such as braces or oral surgeries.
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
Prednisone is an immunosuppressive agent which affects all of the organ systems. Effects on the cellular level include cell activation, replication, differentiation, and mobility. The overall goal is to decrease blistering (inhibition of immediate and delayed hypersensitivity) through decreasing the production of autoantibodies. In order to suppress the production of antibodies, higher doses must be administered. Lesser doses can be prescribed in order to achieve suppression of monocyte function.
Initial treatment involves addressing any existing infections that may have occurred due to the broken state of the skin. Existing wounds are treated with warm compresses, non-adherent (non-stick) dressing, and topical antibiotic ointment. Immunosuppressive agents are administered in attempt to decrease blistering; this is not often effective. The first medication given aiming to heal the wounds are high dose corticosteroids. This is followed by steroid sparing agents which may reduce steroid intake and therefore lessen the side effects. Skin lesions are more likely to respond to this line of treatment than mucosal lesions. However, a high level of caution is advised in patients with a confirmed malignancy, where immunosuppression is vital and dictates treatment options. If the initial therapy fails to control the symptoms of PNP, and the condition of the patient deteriorates, a more aggressive approach may be necessary.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
Typically no treatment is needed. If jaundice is significant phenobarbital may be used.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Treatment usually involves high doses of steroids such as dexamethasone. While high doses of steroids may risk laminitis, low doses are associated with refractory cases. Antibiotics are used to treat any residual nidus of "S. equi". Non-steroidal anti-inflammatory drugs (NSAIDs), such as phenylbutazone or flunixin, may be useful to reduce fever and relieve pain. Intravenous DMSO is sometimes used as a free-radical scavenger and anti-inflammatory. Additionally, wrapping the legs may reduce edema and skin sloughing. Supportive care with oral or IV fluids may also be required.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
The treatment of kidney damage may reverse or delay the progression of the disease. Kidney damage is treated by prescribing drugs:
- Corticosteroids: the result is a decrease in the proteinuria and the risk of infection as well as a resolution of the edema. Prednisone is usually prescribed at a dose of 60 mg/m² of body surface area/day in a first treatment for 4–8 weeks. After this period the dose is reduced to 40 mg/m² for a further 4 weeks. Patients suffering a relapse or children are treated with prednisolone 2 mg/kg/day till urine becomes negative for protein. Then, 1.5 mg/kg/day for 4 weeks. Frequent relapses treated by: cyclophosphamide or nitrogen mustard or cyclosporin or levamisole. Patients can respond to prednisone in a number of different ways:
- Corticosteroid sensitive patient or early steroid-responder: the subject responds to the corticosteroids in the first 8 weeks of treatment. This is demonstrated by a strong diuresis and the disappearance of edemas, and also by a negative test for proteinuria in three urine samples taken during the night.
- Corticosteroid resistant patient or late steroid-responder: the proteinuria persists after the 8-week treatment. The lack of response is indicative of the seriousness of the glomerular damage, which could develop into chronic kidney failure.
- Corticosteroid tolerant patient: complications such as hypertension appear, patients gain a lot of weight and can develop aseptic or avascular necrosis of the hip or knee, cataracts and thrombotic phenomena and/or embolisms.
- Corticosteroid dependent patient: proteinuria appears when the dose of corticosteroid is decreased or there is a relapse in the first two weeks after treatment is completed.
The susceptibility testing in vitro to glucocorticoids on patient's peripheral blood mononuclear cells is associated with the incidence of not optimal clinical responses: the most sensitive patients in vitro have shown a higher incidence of corticodependence, while the most resistant patients in vitro showed a higher incidence of ineffective therapy.
- Immunosupressors (cyclophosphamide): only indicated in recurring nephrotic syndrome in corticosteroid dependent or intolerant patients. In the first two cases the proteinuria has to be negated before treatment with the immunosuppressor can begin, which involves a prolonged treatment with prednisone. The negation of the proteinuria indicates the exact moment when treatment with cyclophosphamide can begin. The treatment is continued for 8 weeks at a dose of 3 mg/kg/day, the immunosuppression is halted after this period. In order to be able to start this treatment the patient should not be suffering from neutropenia nor anaemia, which would cause further complications. A possible side effect of the cyclophosphamide is alopecia. Complete blood count tests are carried out during the treatment in order to give advance warning of a possible infection.
Medroxyprogesterone acetate, a progestin, has been shown to improve the ventilatory response, but this has been poorly studied and is associated with an increased risk of thrombosis. Similarly, the drug acetazolamide can reduce bicarbonate levels, and thereby augment to normal ventilatory response, but this has been researched insufficiently to recommend wide application.
The objective of this treatment is to treat the imbalances brought about by the illness: edema, hypoalbuminemia, hyperlipemia, hypercoagulability and infectious complications.
- Edema: a return to an unswollen state is the prime objective of this treatment of nephrotic syndrome. It is carried out through the combination of a number of recommendations:
- Rest: depending on the seriousness of the edema and taking into account the risk of thrombosis caused by prolonged bed rest.
- Medical nutrition therapy: based on a diet with the correct energy intake and balance of proteins that will be used in synthesis processes and not as a source of calories. A total of 35 kcal/kg body weight/day is normally recommended. This diet should also comply with two more requirements: the first is to not consume more than 1 g of protein/kg body weight/ day, as a greater amount could increase the degree of proteinuria and cause a negative nitrogen balance. Patients are usually recommended lean cuts of meat, fish, and poultry. The second guideline requires that the amount of water ingested is not greater than the level of diuresis. In order to facilitate this the consumption of salt must also be controlled, as this contributes to water retention. It is advisable to restrict the ingestion of sodium to 1 or 2 g/day, which means that salt cannot be used in cooking and salty foods should also be avoided. Foods high in sodium include seasoning blends (garlic salt, Adobo, season salt, etc.) canned soups, canned vegetables containing salt, luncheon meats including turkey, ham, bologna, and salami, prepared foods, fast foods, soy sauce, ketchup, and salad dressings. On food labels, compare milligrams of sodium to calories per serving. Sodium should be less than or equal to calories per serving.
- Medication: The pharmacological treatment of edema is based on the prescription of diuretic drugs (especially loop diuretics, such as furosemide). In severe cases of edema (or in cases with physiological repercussions, such as scrotal, preputial or urethral edema) or in patients with one of a number of severe infections (such as sepsis or pleural effusion), the diuretics can be administered intravenously. This occurs where the risk from plasmatic expansion is considered greater than the risk of severe hypovolemia, which can be caused by the strong diuretic action of intravenous treatment. The procedure is the following:
- Hypoalbuminemia: is treated using the medical nutrition therapy described as a treatment for edema. It includes a moderate intake of foods rich in animal proteins.
- Hyperlipidaemia: depending of the seriousness of the condition it can be treated with medical nutrition therapy as the only treatment or combined with drug therapy. The ingestion of cholesterol should be less than 300 mg/day, which will require a switch to foods that are low in saturated fats. Avoid saturated fats such as butter, cheese, fried foods, fatty cuts of red meat, egg yolks, and poultry skin. Increase unsaturated fat intake, including olive oil, canola oil, peanut butter, avocadoes, fish and nuts. In cases of severe hyperlipidaemia that are unresponsive to nutrition therapy the use of hypolipidemic drugs, may be necessary (these include statins, fibrates and resinous sequesters of bile acids).
- Thrombophilia: low molecular weight heparin (LMWH) may be appropriate for use as a prophylactic in some circumstances, such as in asymptomatic patients that have no history of suffering from thromboembolism. When the thrombophilia is such that it leads to the formation of blood clots, heparin is given for at least 5 days along with oral anticoagulants (OAC). During this time and if the prothrombin time is within its therapeutic range (between 2 and 3), it may be possible to suspend the LMWH while maintaining the OACs for at least 6 months.
- Infectious complications: an appropriate course of antibacterial drugs can be taken according to the infectious agent.
In addition to these key imbalances, vitamin D and calcium are also taken orally in case the alteration of vitamin D causes a severe hypocalcaemia, this treatment has the goal of restoring physiological levels of calcium in the patient.
- Achieving better blood glucose level control if the patient is diabetic.
- Blood pressure control. ACE inhibitors are the drug of choice. Independent of their blood pressure lowering effect, they have been shown to decrease protein loss.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Antisense inhibitors which target the inflammatory process have been used to treat pouchitis in clinical trials. Antisense inhibitors function by binding to messenger RNA (mRNA) produced by a gene and deactivating it, effectively turning that gene "off". Specifically applied to pouchitis, antisense inhibitors would be used to switch off the inflammatory process.
There is no clinically approved treatment for pouchitis.
First line treatment is usually with antibiotics, specifically with ciprofloxacin and metronidazole. Ampicillin or Piperacillin can also be considered as alternatives to empiric Ciprofloxacin and metronidazole). Administration of metronidazole at a high daily dose of 20 mg/kg can cause symptomatic peripheral neuropathology in up to 85% of patients. This can be a limiting factor in the use of maintenance metronidazole to suppress chronic pouchitis.
Other therapies which have been shown to be effective in randomised clinical trials include probiotic therapy, the application of which usually begins as soon as any antibiotic course is completed so as to re-populate the pouch with beneficial bacteria. Biologics, such as anti-TNF antibodies, may also be useful but the evidence for their use is largely anecdotal. In addition, discussion by patients using related internet forums appears to give evidence of benefits (again, after cessation of antibiotics) from certain diets, such as the Specific Carbohydrate Diet, Paleolithic Diet, and Low FODMAP Diet. In particular, attention has been drawn to the exclusion of complex carbohydrates, as well as other foods with high starch content (such as grains, rice, and potatoes) and certain dairy products including milk and soft cheese.
Prognosis is good with early, aggressive treatment (92% survival in one study).
Positive airway pressure, initially in the form of "continuous" positive airway pressure (CPAP), is a useful treatment for obesity hypoventilation syndrome, particularly when obstructive sleep apnea co-exists. CPAP requires the use during sleep of a machine that delivers a continuous positive pressure to the airways and preventing the collapse of soft tissues in the throat during breathing; it is administered through a mask on either the mouth and nose together or if that is not tolerated on the nose only (nasal CPAP). This relieves the features of obstructive sleep apnea and is often sufficient to remove the resultant accumulation of carbon dioxide. The pressure is increased until the obstructive symptoms (snoring and periods of apnea) have disappeared. CPAP alone is effective in more than 50% of people with OHS.
In some occasions, the oxygen levels are persistently too low (oxygen saturations below 90%). In that case, the hypoventilation itself may be improved by switching from CPAP treatment to an alternate device that delivers "bi-level" positive pressure: higher pressure during inspiration (breathing in) and a lower pressure during expiration (breathing out). If this too is ineffective in increasing oxygen levels, the addition of oxygen therapy may be necessary. As a last resort, tracheostomy may be necessary; this involves making a surgical opening in the trachea to bypass obesity-related airway obstruction in the neck. This may be combined with mechanical ventilation with an assisted breathing device through the opening.
A number of leprostatic agents are available for treatment. For paucibacillary (PB or tuberculoid) cases, treatment with daily dapsone and monthly rifampicin for six months is recommended. While for multibacillary (MB or lepromatous) cases, treatment with daily dapsone and clofazimine along with monthly rifampicin for 12 months is recommended.
Multidrug therapy (MDT) remains highly effective, and people are no longer infectious after the first monthly dose. It is safe and easy to use under field conditions due to its presentation in calendar blister packs. Relapse rates remain low, and no resistance to the combined drugs is seen.
The treatment of Majocchi's disease can be difficult because the condition can slowly progress and is chronic in nature. After a period of time, the lesions can reoccur. Even though the condition has improved, there is always the possibility of reoccurrence. There are treatments available to help improve the symptoms, however, there is no absolute cure for the disease. Some of these treatments include the application of topical steroids and lotions and ultraviolet therapy. The use of narrowband UVB and psoralen plus UVA have shown to be effective treatments for some patients with pigmented purpuric dermatoses. Majocchi granuloma also commonly occurs as a result of the use of potent topical steroids on unsuspected tinea. Historically, antifungal therapy has been successful in controlling MG in most instances. Therapies that have been used, included oral potassium iodide, mildly filtered local X-radiation, and topical applications of Asterol as a fungicide in both tincture and ointment forms. In modern medicine, systemic antifungals, such as griseofulvin, ketoconazole, and itraconazole, are the pillars of therapy, as they are safe and effective. The duration of therapy should be at least 4–8 weeks, and treatment should be continued until all lesions are cleared. Currently, no data about relapse rates or the complications of not treating Majocchi granuloma exist.
Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.
A dermatologist or general physician usually administers combination therapy of drugs used for tuberculosis, such as Rifampicin, Isoniazid and Pyrazinamide (possibly with either streptomycin or ethambutol).
Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.