Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Management of AOS is largely symptomatic and aimed at treating the various congenital anomalies present in the individual. When the scalp and/or cranial bone defects are severe, early surgical intervention with grafting is indicated.
There is currently no cure for the disease but treatments to help the symptoms are available.
No cure is known for 22q11.2 deletion syndrome. Certain individual features are treatable using standard treatments. The key is to identify each of the associated features and manage each using the best available treatments.
For example, in children, it is important that the immune problems are identified early, as special precautions are required regarding blood transfusion and immunization with live vaccines. Thymus transplantation can be used to address absence of the thymus in the rare, so-called "complete" 22q11.2 deletion syndrome. Bacterial infections are treated with antibiotics. Cardiac surgery is often required for congenital heart abnormalities. Hypoparathyroidism causing hypocalcaemia often requires lifelong vitamin D and calcium supplements. Specialty clinics that provide multi-system care allow for individuals with 22q11.2 deletion syndrome to be evaluated for all of their health needs and allow for careful monitoring of the patients. An example of this type of system is the 22q Deletion Clinic at SickKids Hospital in Toronto, Canada, which provides children with 22q11 deletion syndrome ongoing support, medical care and information from a team of health care workers.
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
For patients with vWD type 1 and vWD type 2A, desmopressin is available as different preparations, recommended for use in cases of minor trauma, or in preparation for dental or minor surgical procedures. Desmopressin stimulates the release of vWF from the Weibel-Palade bodies of endothelial cells, thereby increasing the levels of vWF (as well as coagulant factor VIII) three- to five-fold. Desmopressin is also available as a preparation for intranasal administration (Stimate) and as a preparation for intravenous administration. Recently, the FDA has approved the use of Baxalta’s Vonvendi. This is the first recombinant form of vWF. The effectiveness of this treatment is different than desmopressin because it only contains vWF, not vWF with the addition of FVIII. This treatment is only recommended for use by individuals who are 18 years of age or older.
Desmopressin is contraindicated in vWD type 2b because of the risk of aggravated thrombocytopenia and thrombotic complications. Desmopressin is probably not effective in vWD type 2M and is rarely effective in vWD type 2N. It is totally ineffective in vWD type 3.
For women with heavy menstrual bleeding, estrogen-containing oral contraceptive medications are effective in reducing the frequency and duration of the menstrual periods. Estrogen and progesterone compounds available for use in the correction of menorrhagia are ethinylestradiol and levonorgestrel (Levona, Nordette, Lutera, Trivora). Administration of ethinylestradiol diminishes the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, leading to stabilization of the endometrial surface of the uterus.
Desmopressin is a synthetic analog of the natural antidiuretic hormone vasopressin. Its overuse can lead to water retention and dilutional hyponatremia with consequent convulsion.
For patients with vWD scheduled for surgery and cases of vWD disease complicated by clinically significant hemorrhage, human-derived medium purity factor VIII concentrates, which also contain von Willebrand factors, are available for prophylaxis and treatment. Humate P, Alphanate, Wilate and Koate HP are commercially available for prophylaxis and treatment of vWD. Monoclonally purified factor VIII concentrates and recombinant factor VIII concentrates contain insignificant quantity of vWF, so are not clinically useful.
Development of alloantibodies occurs in 10-15% of patients receiving human-derived medium-purity factor VIII concentrates and the risk of allergic reactions including anaphylaxis must be considered when administering these preparations. Administration of the latter is also associated with increased risk of venous thromboembolic complications.
Blood transfusions are given as needed to correct anemia and hypotension secondary to hypovolemia. Infusion of platelet concentrates is recommended for correction of hemorrhage associated with platelet-type vWD.
The antifibrinolytic agents epsilon amino caproic acid and tranexamic acid are useful adjuncts in the management of vWD complicated by clinical hemorrhage. The use topical thrombin JMI and topical Tisseel VH are effective adjuncts for correction of hemorrhage from wounds.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Treatments of NTDs depends on the severity of the complication. No treatment is available for anencephaly and infants usually do not survive more than a few hours. Aggressive surgical management has improved survival and the functions of infants with spina bifida, meningoceles and mild myelomeningoceles. The success of surgery often depends on the amount of brain tissue involved in the encephalocele. The goal of treatment for NTDs is to allow the individual to achieve the highest level of function and independence. Fetal surgery in utero before 26 weeks gestation has been performed with some hope that there is benefit to the final outcome including a reduction in Arnold–Chiari malformation and thereby decreases the need for a ventriculoperitoneal shunt but the procedure is very high risk for both mother and baby and is considered extremely invasive with questions that the positive outcomes may be due to ascertainment bias and not true benefit. Further, this surgery is not a cure for all problems associated with a neural tube defect. Other areas of research include tissue engineering and stem cell therapy but this research has not been used in humans.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
In 1996, the United States Food and Drug Administration published regulations requiring the addition of folic acid to enriched breads, cereals, flour and other grain products. It is important to note that during the first four weeks of pregnancy (when most women do not even realize that they are pregnant), adequate folate intake is essential for proper operation of the neurulation process. Therefore, women who could become pregnant are advised to eat foods fortified with folic acid or take supplements in addition to eating folate-rich foods to reduce the risks of serious birth defects.
In Canada, mandatory fortification of selected foods with folic acid has been shown to reduce the incidence of neural tube defects by 46%.
Women who may become pregnant are advised to get 400 micrograms of folic acid daily. Women who have previously given birth to a child with a neural tube defect may benefit from a supplement containing 4.0 mg/5.0 mg in the UK mg daily, following advice provided by their doctor.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
Probably, the most well-known teratogenic drug is thalidomide. It was developed near the end of the 1950s by Chemie Grűnenthal as a sleep inducing aid and antiemetic. Because of its ability to prevent nausea it was prescribed for pregnant women in almost 50 countries worldwide between 1956–1962. Until William McBride published the study leading to its withdrawal from the market at 1961, about 8- 10 000 severely malformed children were born. The most typical disorder induced by thalidomide were reductional deformities of the long bones of the extremities. Phocomelia otherwise a rare deformity, which therefore helped to recognise the teratogenic effect of the new drug. Among other malformations caused by thalidomide were those of ears, eyes, brain, kidney, heart, digestive and respiratory tract. 40% of the prenatally affected children died soon after birth. As thalidomide is used today as a treatment for multiple myeloma and leprosy, several births of affected children were described in spite of the strictly required use of contraception among female patients treated by it.
Vitamin A, or retinol, is the sole vitamin which is embryotoxic even in a therapeutic dose, for example in multivitamins, because its metabolite, the retinoic acid, plays an important role as a signal molecule in the development of several tisues and organs. Its natural precursor, the β-carotene, is considered safe, whereas the consumption of animal liver can lead to malformation, as the liver stores lipophile vitamins, including retinol. Isotretinoin (13-cis-retinoic-acid; brand name Roaccutane), vitamine A analog, which is often used to treat severe acne, is such a strong teratogen that just a single dose taken by a pregnant woman (even transdermally) may result in serious birth defects. Because of this effect, most countries have systems in place to ensure that it is not given to pregnant women, and that the patient is aware of how important it is to prevent pregnancy during and at least one month after treatment. Medical guidelines also suggest that pregnant women should limit vitamin A intake to about 700 μg/day, as it has teratogenic potential when consumed in excess. Vitamine A and similar substances can induce spontaneous abortions, premature births, defects of eyes (microphthalmia), ears, thymus, face deformities, neurological (hydrocephalus, microcephalia) and cardiovascular defects, as well as mental retardation.
Tetracycline, an antibiotic, should never be prescribed to women in the reproductive age or children, because of its negative impact on bone mineralization and teeth mineralization. The "tetracycline teeth" have brown or grey colour as a result of a defective development of both the dentine and the enamel of teeth.
Several anticonvulsants are known to be highly teratogenic. Phenytoin, also known as diphenylhydantoin, along with carbamazepine is responsible for the fetal hydantoin syndrome, which may typically include broad nose base, cleft lip and/or palate, microcephalia, nails and fingers hypoplasia, intrauterine growth restriction and mental retardation. Trimethadione taken during pregnancy is responsible for the fetal trimethadione syndrome, characterized by craniofacial, cardiovascular, renal and spine malformations, along with a delay in mental and physical development. Valproate has anti-folate effects, leading to neural tube closure-related defects such as spina bifida. Lower IQ and autism have recently also been reported as a result of intrauterine valproate exposure.
Hormonal contraception is considered as harmless for the embryo. Peterka and Novotná do however state that syntethic progestines used to prevent miscarriage in the past frequently caused masculinization of the outer reproductive organs of female newborns due to their androgenic activity. Diethylstilbestrol is a synthetic estrogen used from the 1940s to 1971 when the prenatal exposition has been linked to the clear-cell adenocarcinoma of the vagina. Following studies showed elevated risks for other tumors and congenital malformations of the sex organs for both sexes.
All cytostatics are strong teratogens, abortion is usually recommended when pregnancy is found during or before chemotherapy. Aminopterin, a cytostatic drug with anti-folate effect, was used during the 1950s and 1960s to induce therapeutic abortions. In some cases the abortion didn´t happen, but the newborns suffered a fetal aminopterin syndrome consisting of growth retardation, craniosynostosis, hydrocephalus, facial dismorphities, mental retardation and/or leg defomities
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
Prognosis strongly depends on which subtype of disease it is. Some are deadly in infancy but most are late onset and mostly manageable.
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
About one third of children whose mothers are taking this drug during pregnancy typically have intrauterine growth restriction with a small head and develop minor dysmorphic craniofacial features and limb defects including hypoplastic nails and distal phalanges (birth defects). A smaller population will have growth problems and developmental delay, or intellectual disability. Methemoglobinemia is a rarely seen side effect.
Heart defects and cleft lip may also be featured.
Pharmacologic management of ARVD involves arrhythmia suppression and prevention of thrombus formation.
Sotalol, a beta blocker and a class III antiarrhythmic agent, is the most effective antiarrhythmic agent in ARVD. Other antiarrhythmic agents used include amiodarone and conventional beta blockers (i.e.: metoprolol). If antiarrhythmic agents are used, their efficacy should be guided by series ambulatory holter monitoring, to show a reduction in arrhythmic events.
While angiotensin converting enzyme inhibitors (ACE Inhibitors) are well known for slowing progression in other cardiomyopathies, they have not been proven to be helpful in ARVD.
Individuals with decreased RV ejection fraction with dyskinetic portions of the right ventricle may benefit from long term anticoagulation with warfarin to prevent thrombus formation and subsequent pulmonary embolism.
Fetal hydantoin syndrome, also called fetal dilantin syndrome is a group of defects caused to the developing fetus by exposure to teratogenic effects of phenytoin or carbamazepine. Dilantin is the brand name of the drug phenytoin sodium in the United States, commonly used in the treatment of epilepsy.
It may also be called congenital hydantoin syndrome, Fetal Hydantoin Syndrome, Dilantin Embryopathy, or Phenytoin Embryopathy.
Association with EPHX1 has been suggested.
For the survivors of the atomic bombing of Hiroshima and Nagasaki, who are known as the "Hibakusha", no statistically demonstrable increase of birth defects/congenital malformations was found among their later conceived children, or found in the later conceived children of cancer survivors who had previously received radiotherapy.
The surviving women of Hiroshima and Nagasaki who were able to conceive, though exposed to substantial amounts of radiation, later had children with no higher incidence of abnormalities/birth defects than in the Japanese population as a whole.
Relatively few studies have researched the effects of paternal radiation exposure on offspring. Following the Chernobyl disaster, it was assumed in the 1990s that the germ line of irradiated fathers suffered minisatellite mutations in the DNA, which was inherited by descendants. more recently however, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies". This statistically insignificant increase was also seen by independent researchers analyzing the children of the liquidators. Animal studies have shown that incomparably "massive" doses of X-ray irradiation of male mice resulted in birth defects of the offspring.
In the 1980s, a relatively high prevalence of pediatric leukemia cases in children living near a nuclear processing plant in West Cumbria, UK, led researchers to investigate whether the cancer was a result of paternal radiation exposure. A significant association between paternal irradiation and offspring cancer was found, but further research areas close to other nuclear processing plants did not produce the same results. Later this was determined to be the Seascale cluster in which the leading hypothesis is the influx of foreign workers, who have a different rate of leukemia within their race than the British average, resulted in the observed cluster of 6 children more than expected around Cumbria.
The VACTERL association (also VATER association) refers to a recognized group of birth defects which tend to have a non-random occurrence (see below). Note that this pattern is a recognized association, as opposed to a syndrome, because there is no known pathogenetic cause to explain the grouped incidence.
Each child with this condition can be unique. At present this condition is treated after birth with issues being approached one at a time. Some infants are born with symptoms that cannot be fixed and they do not survive. Causes of this association are debated, though it appears to be genetic according to certain studies. Also, VACTERL association can be linked to other similar conditions such as Klippel Feil and Goldenhar Syndrome including crossovers of conditions.
No specific genetic or chromosome problem has been identified with VACTERL association. VACTERL can be seen with some chromosomal defects such as Trisomy 18 and is more frequently seen in babies of diabetic mothers. VACTERL association, however, is most likely caused by multiple factors.
VACTERL association specifically refers to the abnormalities in structures derived from the embryonic mesoderm.
The frequency of first permanent molar treatment for children with MIH is nearly 10 times greater compared to children without MIH. The available treatment modalities for MIH is extensive but the decision on which treatment should be used is complex and multi-factorial. Factors may include: condition severity, the patient’s dental age, the child/parent’s social background and expectations. There are treatment modalities available to manage children affected by MIH; however, the evidence supporting these modalities are still weak.
Pre-formed metal crowns (PMC), also known as stainless steel crowns, can be used to reduce the risk of marginal breakdown, coronal leakage and has a good longevity. The use of preformed metal crowns on MIH-affected molars can prevent further tooth loss, control hypersensitivity and aim to establish correct interproximal and occlusal contact. They are relatively inexpensive and require little preparation.
To prevent further tooth preparation and tissue loss, use of the Hall Technique should also be considered. There advantage is use during any stage of post-eruptive breakdown, but evidence of their efficacy is limited. Although the PMC has evidence to show that it is well accepted, a few of the children and their carers expressed their concerns about the metallic appearances of the restoration.