Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Occasionally, the anemia is so severe that support with transfusion is required. These patients usually do not respond to erythropoietin therapy. Some cases have been reported that the anemia is reversed or heme level is improved through use of moderate to high doses of pyrodoxine (vitamin B). In severe cases of SBA, bone marrow transplant is also an option with limited information about the success rate. Some cases are listed on MedLine and various other medical sites. In the case of isoniazid-induced sideroblastic anemia, the addition of B is sufficient to correct the anemia. Desferrioxamine, a chelating agent, is used to treat iron overload from transfusions.
Therapeutic phlebotomy can be used to manage iron overload.
Treatments for anemia depend on cause and severity. Vitamin supplements given orally (folic acid or vitamin B) or intramuscularly (vitamin B) will replace specific deficiencies.
Treating immune-mediated aplastic anemia involves suppression of the immune system, an effect achieved by daily medicine intake, or, in more severe cases, a bone marrow transplant, a potential cure. The transplanted bone marrow replaces the failing bone marrow cells with new ones from a matching donor. The multipotent stem cells in the bone marrow reconstitute all three blood cell lines, giving the patient a new immune system, red blood cells, and platelets. However, besides the risk of graft failure, there is also a risk that the newly created white blood cells may attack the rest of the body ("graft-versus-host disease"). In young patients with an HLA matched sibling donor, bone marrow transplant can be considered as first-line treatment, patients lacking a matched sibling donor typically pursue immunosuppression as a first-line treatment, and matched unrelated donor transplants are considered a second-line therapy.
Medical therapy of aplastic anemia often includes a course of antithymocyte globulin (ATG) and several months of treatment with ciclosporin to modulate the immune system. Chemotherapy with agents such as cyclophosphamide may also be effective but has more toxicity than ATG. Antibody therapy, such as ATG, targets T-cells, which are believed to attack the bone marrow. Corticosteroids are generally ineffective, though they are used to ameliorate serum sickness caused by ATG. Normally, success is judged by bone marrow biopsy 6 months after initial treatment with ATG.
One prospective study involving cyclophosphamide was terminated early due to a high incidence of mortality, due to severe infections as a result of prolonged neutropenia.
In the past, before the above treatments became available, patients with low leukocyte counts were often confined to a sterile room or bubble (to reduce risk of infections), as in the case of Ted DeVita.
In cases where oral iron has either proven ineffective, would be too slow (for example, pre-operatively) or where absorption is impeded (for example in cases of inflammation), parenteral iron can be used. The body can absorb up to 6 mg iron daily from the gastrointestinal tract. In many cases the patient has a deficit of over 1,000 mg of iron which would require several months to replace. This can be given concurrently with erythropoietin to ensure sufficient iron for increased rates of erythropoiesis.
When treating iron-deficiency anemia, considerations of the proper treatment methods are done in light of the "cause and severity" of the condition. If the iron-deficiency anemia is a downstream effect of blood loss or another underlying cause, treatment is geared toward addressing the underlying cause when possible. In severe acute cases, treatment measures are taken for immediate management in the interim, such as blood transfusions or even intravenous iron.
Iron-deficiency anemia treatment for less severe cases includes dietary changes to incorporate iron-rich foods into regular oral intake. Foods rich in ascorbic acid (vitamin C) can also be beneficial, since ascorbic acid enhances iron absorption. Other oral options are iron supplements in the form of pills or drops for children.
As iron-deficiency anemia becomes more severe, or if the anemia does not respond to oral treatments, other measures may become necessary. In addition to the previously mentioned indication for intravenous iron or blood transfusions, intravenous iron may also be used when oral intake is not tolerated, as well as for other indications. Specifically, for those on dialysis, parenteral iron is commonly used. Individuals on dialysis who are taking forms of erythropoietin or some "erythropoiesis-stimulating agent" are given parenteral iron, which helps the body respond to the erythropoietin agents and produce red blood cells.
The various forms of treatment are not without possible adverse effects. Iron supplementation by mouth commonly causes negative gastrointestinal effects, including constipation. Intravenous iron can induce an allergic response that can be as serious as anaphylaxis, although different formulations have decreased the likelihood of this adverse effect.
Definitive therapy depends on the cause:
- Symptomatic treatment can be given by blood transfusion, if there is marked anemia. A positive Coombs test is a relative contraindication to transfuse the patient. In cold hemolytic anemia there is advantage in transfuse warmed blood
- In severe immune-related hemolytic anemia, steroid therapy is sometimes necessary.
- In steroid resistant cases, consideration can be given to rituximab or addition of an immunosuppressant ( azathioprine, cyclophosphamide)
- Association of methylprednisolone and intravenous immunoglobulin can control hemolysis in acute severe cases
- Sometimes splenectomy can be helpful where extravascular hemolysis, or hereditary spherocytosis, is predominant (i.e., most of the red blood cells are being removed by the spleen).
Sideroblastic anemias are often described as responsive or non-responsive in terms of increased hemoglobin levels to pharmacological doses of vitamin B.
1- Congenital: 80% are responsive, though the anemia does not completely resolve.
2- Acquired clonal: 40% are responsive, but the response may be minimal.
3- Acquired reversible: 60% are responsive, but course depends on treatment of the underlying cause.
Severe refractory sideroblastic anemias requiring regular transfusions and/or that undergo leukemic transformation (5-10%) significantly reduce life expectancy.
One exploratory, and potential alternative method for the treatment of pernicious anemia is the use of transdermal patches. In one such system, the patches are composed of cyanocobalamin, its stabilizers, and epidermal penetration enhancers. The transdermal route allows the cobalamin derivative to passively diffuse through the stratum corneum, epidermis, and dermis, and ultimately entering the bloodstream; hence, the cobalamin avoids the hepatic first pass effect, and so offers the potential for improved bioavailability and efficacy. Slow release increases cobalamin half-life, offering the potential of decreases in required dosage required relative to oral delivery methods. In one such system, a drug-loaded polycaprolactone fiber that is prepared as a electrospun nanofiber can release hundreds of micrograms of cobabalmin per day.
Treatment with high-dose vitamin B by mouth also appears effective.
Much literature exists regarding the treatment of AIHA. Efficacy of treatment depends on the correct diagnosis of either warm- or cold-type AIHA.
Warm-type AIHA is usually a more insidious disease, not treatable by simply removing the underlying cause. Corticosteroids are first-line therapy. For those who fail to respond or have recurrent disease, splenectomy may be considered. Other options for recurrent or relapsed disease include immunosuppressants such as rituximab, danazol, cyclophosphamide, azathioprine, or cyclosporine.
Cold agglutinin disease is treated with avoidance of cold exposure. Patients with more severe disease (symptomatic anemia, transfusion dependence) may be treated with rituximab. Steroids and splenectomy are less efficacious in cold agglutinin disease.
Paroxysmal cold hemoglobinuria is treated by removing the underlying cause, such as infection.
The ideal treatment for anemia of chronic disease is to treat the chronic disease successfully, but this is rarely possible.
Parenteral iron is increasingly used for anemia in chronic renal disease and inflammatory bowel disease.
Erythropoietin can be helpful, but this is costly and may be dangerous. Erythropoietin is advised either in conjunction with adequate iron replacement which in practice is intravenous, or when IV iron has proved ineffective.
Corticosteroids can be used to treat anemia in DBA. In a large study of 225 patients, 82% initially responded to this therapy, although many side effects were noted. Some patients remained responsive to steroids, while efficacy waned in others. Blood transfusions can also be used to treat severe anemia in DBA. Periods of remission may occur, during which transfusions and steroid treatments are not required. Bone marrow transplantation (BMT) can cure hematological aspects of DBA. This option may be considered when patients become transfusion-dependent because frequent transfusions can lead to iron overloading and organ damage. However, adverse events from BMTs may exceed those from iron overloading. A 2007 study showed the efficacy of leucine and isoleucine supplementation in one patient. Larger studies are being conducted.
It is unclear if screening pregnant women for iron-deficiency anemia during pregnancy improves outcomes in the United States. The same holds true for screening children who are "6 to 24 months" old.
Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.
Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.
Untreated, severe aplastic anemia has a high risk of death. Modern treatment, by drugs or stem cell transplant, has a five-year survival rate that exceeds 85%, with younger age associated with higher survival.
Survival rates for stem cell transplant vary depending on age and availability of a well-matched donor. Five-year survival rates for patients who receive transplants have been shown to be 82% for patients under age 20, 72% for those 20–40 years old, and closer to 50% for patients over age 40. Success rates are better for patients who have donors that are matched siblings and worse for patients who receive their marrow from unrelated donors.
Older people (who are generally too frail to undergo bone marrow transplants), and people who are unable to find a good bone marrow match, undergoing immune suppression have five-year survival rates of up to 75%.
Relapses are common. Relapse following ATG/ciclosporin use can sometimes be treated with a repeated course of therapy. In addition, 10-15% of severe aplastic anemia cases evolve into MDS and leukemia. According to a study, for children who underwent immunosuppressive therapy, about 15.9% of children who responded to immunosuppressive therapy encountered relapse.
Milder disease can resolve on its own.
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to AML.
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy. Supportive care with blood products and hematopoietic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National coverage determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document though.
Three agents have been approved by the FDA for the treatment of MDS:
1. 5-azacytidine: 21-month median survival
2. Decitabine: Complete response rate reported as high as 43%. A phase I study has shown efficacy in AML when decitabine is combined with valproic acid.
3. Lenalidomide: Effective in reducing red blood cell transfusion requirement in patients with the chromosome 5q deletion subtype of MDS
Chemotherapy with the hypomethylating agents 5-azacytidine and decitabine has been shown to decrease blood transfusion requirements and to retard the progression of MDS to AML. Lenalidomide was approved by the FDA in December 2005 only for use in the 5q- syndrome. In the United States, treatment of MDS with lenalidomide costs about $9,200 per month.
Stem cell transplantation, particularly in younger (i.e. less than 40 years of age) and more severely affected patients, offers the potential for curative therapy. Success of bone marrow transplantation has been found to correlate with severity of MDS as determined by the IPSS score, with patients having a more favorable IPSS score tending to have a more favorable outcome with transplantation.
Iron overload can develop in MDS as a result of the RBC transfusions which are a major part of the supportive care for anemic MDS patients. Although the specific therapies patients receive may alleviate the RBC transfusion need in some cases, many MDS patients may not respond to these treatments, thus may develop iron overload from repeated RBC transfusions.
Patients requiring relatively large numbers of RBC transfusions can experience the adverse effect of chronic iron overload on their liver, heart, and endocrine functions. The resulting organ dysfunction from transfusional iron overload might be a contributor to increased illness and death in early-stage MDS.
For patients requiring many RBC transfusions, serum ferritin levels, number of RBC transfusions received, and associated organ dysfunction (heart, liver, and pancreas) should be monitored to determine iron levels. Monitoring serum ferritin may also be useful, aiming to decrease ferritin levels to .
Currently, two iron chelators are available in the US, deferoxamine for intravenous use and deferasirox for oral use. These options now provide potentially useful drugs for treating this iron overload problem. A third chelating agent is available in Europe, deferiprone for oral use, but not available in the US.
Clinical trials in the MDS are ongoing with iron chelating agents to address the question of whether iron chelation alters the natural history of patients with MDS who are transfusion dependent. Reversal of some of the consequences of iron overload in MDS by iron chelation therapy have been shown.
Both the MDS Foundation and the National Comprehensive Cancer Network MDS Guidelines Panel have recommended that chelation therapy be considered to decrease iron overload in selected MDS patients. Evidence also suggests a potential value exists to iron chelation in patients who will undergo a stem cell transplant.
Although deferasirox is generally well tolerated (other than episodes of gastrointestinal distress and kidney dysfunction in some patients), recently a safety warning by the FDA and Novartis was added to deferasirox treatment guidelines. Following postmarketing use of deferasirox, rare cases of acute kidney failure or liver failure occurred, some resulting in death. Due to this, patients should be closely monitored on deferasirox therapy prior to the start of therapy and regularly thereafter.
In terms of treatment of atransferrinemia, iron supplements (oral iron therapy) are the preferred choice, one finds that RBC transfusions are very infrequently needed.
In general, AIHA in children has a good prognosis and is self-limiting. However, if it presents within the first two years of life or in the teenage years, the disease often follows a more chronic course, requiring long-term immunosuppression, with serious developmental consequences. The aim of therapy may sometimes be to lower the use of steroids in the control of the disease. In this case, splenectomy may be considered, as well as other immunosuppressive drugs. Infection is a serious concern in patients on long-term immunosuppressant therapy, especially in very young children (less than two years).
Congenital hemolytic anemia (or hereditary hemolytic anemia) refers to hemolytic anemia which is primarily due to congenital disorders.
Microcytic anaemia is any of several types of anaemia characterized by small red blood cells (called microcytes). The normal mean corpuscular volume (abbreviated to MCV on full blood count results) is 80-100 fL, with smaller cells (100 fL) as macrocytic (the latter occur in macrocytic anemia).The MCV is the average red blood cell size.
In microcytic anaemia, the red blood cells (erythrocytes) are usually also hypochromic, meaning that the red blood cells appear paler than usual. This is reflected by a lower-than-normal mean corpuscular hemoglobin concentration (MCHC), a measure representing the amount of hemoglobin per unit volume of fluid inside the cell; normally about 320-360 g/L or 32-36 g/dL. Typically, therefore, anemia of this category is described as "microcytic, hypochromic anaemia".
Limiting some microbes' access to iron can reduce their virulence, thereby potentially reducing the severity of infection. Blood transfusion to patients with anemia of chronic disease is associated with a higher mortality, supporting the concept.
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
Acquired hemolytic anemia may be caused by immune-mediated causes, drugs and other miscellaneous causes.
- Immune-mediated causes could include transient factors as in "Mycoplasma pneumoniae" infection (cold agglutinin disease) or permanent factors as in autoimmune diseases like autoimmune hemolytic anemia (itself more common in diseases such as systemic lupus erythematosus, rheumatoid arthritis, Hodgkin's lymphoma, and chronic lymphocytic leukemia).
- Spur cell hemolytic anemia
- Any of the causes of hypersplenism (increased activity of the spleen), such as portal hypertension.
- Acquired hemolytic anemia is also encountered in burns and as a result of certain infections (e.g. malaria).
- Lead poisoning resulting from the environment causes non-immune hemolytic anemia.
- Runners can suffer hemolytic anemia due to "footstrike hemolysis", owing to the destruction of red blood cells in feet at foot impact.
- Low-grade hemolytic anemia occurs in 70% of prosthetic heart valve recipients, and severe hemolytic anemia occurs in 3%.