Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
First-line therapy for disseminated or localized instances of pyoderma gangrenosum is systemic treatment by corticosteroids and ciclosporin. Topical application of clobetasol, mupirocin, and gentamicin alternated with tacrolimus can be effective.
Pyoderma gangrenosum ulcers demonstrate pathergy, that is, a worsening in response to minor trauma or surgical debridement. Significant care should be taken with dressing changes to prevent potentially rapid wound growth. Many patients respond differently to different types of treatment, for example some benefit from a moist environment, so treatment should be carefully evaluated at each stage.
Papules that begin as small "spouts" can be treated with Dakins Solution to prevent infection and wound clusters also benefit from this disinfectant. Wet to dry applications of Dakins can defeat spread of interior infection. Heavy drainage can be offset with Coban dressings. Grafting is not recommended due to tissue necrosis.
If ineffective, alternative therapeutic procedures include systemic treatment with corticosteroids and mycophenolate mofetil; mycophenolate mofetil and ciclosporin; tacrolimus; thalidomide; infliximab; or plasmapheresis.
There is currently a phase III trial for the use of the IL-1B modulating agent gevokizumab in treating the ulcers of pyoderma gangrenosum.
Acne treatment may require oral tetracycline antibiotics or isotretinoin. Treatments directed at tumor necrosis factor (TNF) (infliximab, etanercept) and interleukin-1 (anakinra) have shown a good response in resistant arthritis and pyoderma gangrenosum. Other traditional immunosuppressant treatments for arthritis or pyoderma gangrenosum may also be used.
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
Systemic corticosteroids such as (prednisone) can produce rapid improvement and are the “gold standard” for treatment. The temperature, white blood cell count, and eruption improve within 72 hours. The skin lesions clear within 3 to 9 days. Abnormal laboratory values rapidly return to normal. There are, however, frequent recurrences. Corticosteroids are tapered within 2 to 6 weeks to zero.
Resolution of the eruption is occasionally followed by milia and scarring. The disease clears spontaneously in some patients. Topical and/or intralesional corticosteroids may be effective as either monotherapy or adjuvant therapy.
Oral potassium iodide or colchicine may induce rapid resolution.
Patients who have a potential systemic infection or in whom corticosteroids are contraindicated can use these agents as a first-line therapy.
In one study, indomethacin, 150 mg per day, was given for the first week, and 100 mg per day was given for 2 additional weeks. Seventeen of 18 patients had a good initial response; fever and arthralgias were markedly attenuated within 48 hours, and eruptions cleared between 7 and 14 days.
Patients whose cutaneous lesions continued to develop were successfully treated with prednisone (1 mg/kg per day). No patient had a relapse after discontinuation of indomethacin.
Other alternatives to corticosteroid treatment include dapsone, doxycycline, clofazimine, and cyclosporine. All of these drugs influence migration and other functions of neutrophils.
The main organism associated with ecthyma gangrenosum is "Pseudomonas aeruginosa". However, multi-bacterial cases are reported as well. Prevention measures include practicing proper hygiene, educating the immunocompromised patients for awareness to avoid possible conditions and seek timely medical treatment.
Medications with good evidence include ivermectin and azelaic acid creams and brimonidine, doxycycline, and isotretinoin by mouth. Lesser evidence supports metronidazole cream and tetracycline by mouth.
Metronidazole is thought to act through anti-inflammatory mechanisms, while azelaic acid is thought to decrease cathelicidin production. Oral antibiotics of the tetracycline class such as doxycycline and oxytetracycline are also commonly used and thought to reduce papulopustular lesions through anti-inflammatory actions rather than through their antibacterial capabilities.
Using alpha-hydroxy acid peels may help relieve redness caused by irritation, and reduce papules and pustules associated with rosacea. Oral antibiotics may help to relieve symptoms of ocular rosacea. If papules and pustules persist, then sometimes isotretinoin can be prescribed.
The flushing and blushing that typically accompanies rosacea is typically treated with the topical application of alpha agonists such as brimonidine and less commonly oxymetazoline or xylometazoline.
Intertrigo is treated by addressing associated infections, by removing moisture from the site, and by using substances at the site to help maintain skin integrity. If the individual is overweight, losing weight may also help. Relapses of intertrigo are common.
Keeping the area of the intertrigo dry and exposed to the air can help prevent recurrences, as can removing moisture from the area using absorbent fabrics or body powders, including plain cornstarch and judiciously used antiperspirants.
Greases, oils, and barrier ointments, may help by protecting skin from moisture and from friction. Antifungal powders, most commonly clotrimazole 1%, may also be used in conjunction with a barrier ointment. Diaper rash ointment can also help.
Fungal infections associated with intertrigo may be treated with prescription antifungals applied directly to the skin (in most cases) or systemic antifungals, including fluconazole, nystatin, and griseofulvin.
Intertrigo is also a known symptom of vitamin B6 deficiency.
Dermatological vascular laser (single wavelength) or intense pulsed light (broad spectrum) machines offer one of the treatments for rosacea, in particular the erythema (redness) of the skin. They use light to penetrate the epidermis to target the capillaries in the dermis layer of the skin. The light is absorbed by oxyhemoglobin, which heats up, causing the capillary walls to heat up to 70 °C (158 °F), damaging them, and causing them to be absorbed by the body's natural defense mechanism. With a sufficient number of treatments, this method may even eliminate the redness altogether, though additional periodic treatments will likely be necessary to remove newly formed capillaries.
CO lasers can be used to remove excess tissue caused by phymatous rosacea. CO lasers emit a wavelength that is absorbed directly by the skin. The laser beam can be focused into a thin beam and used as a scalpel or defocused and used to vaporize tissue. Low-level light therapies have also been used to treat rosacea. Photorejuvenation can also reportedly be used to improve the appearance of rosacea and reduce the redness associated with it.
Large doses of glucocorticoids are the treatment of choice, and are administered until the signs have resolved. In uncomplicated cases, this can take up to a month. If dogs are not treated promptly and with high doses of steroids, severe scarring may occur. If there is evidence of secondary bacterial infection, treatment with antibiotics is required.
Sweating causes lesions to form, but lesions aggravated by sweat usually return to "normal" fairly quicklyavoiding sweat is not a reason to avoid exercise. Minor outbreaks can be controlled with prescription strength topical cortisone creams. More severe eruptions usually clear up after treatment for one to three months with Accutane or tetracycline. If these fail or the outbreak is severe, PUVA phototherapy treatments, antifungal pills and cortisone injections are alternatives.
Some research has suggested a correlation of Grover's disease with mercury toxicity in which case Dimercaptosuccinic acid might help.
Commonly used dietary supplements include:
- Omega-6 fatty acids (e.g., safflower or sunflower oil)
- Omega-3 fatty acids (e.g., fish oils)
- Vitamin A.
Treatment of mixed cryoglobulinemic disease is, similar to type I disease, directed toward treating any underlying disorder. This includes malignant (particularly Waldenström's macroglobulinemia in type II disease), infectious, or autoimmune diseases in type II and III disease. Recently, evidence of hepatitis C infection has been reported in the majority of mixed disease cases with rates being 70-90% in areas with high incidences of hepatitis C. The most effective therapy for hepatitis C-associated cryoglobulinemic disease consists of a combination of anti-viral drugs, pegylated INFα and ribavirin; depletion of B cells using rituximab in combination with antiviral therapy or used alone in patients refractory to antiviral therapy has also proven successful in treating the hepatitis C-associated disease. Data on the treatment of infectious causes other than hepatitis C for the mixed disease are limited. A current recommendation treats the underlying disease with appropriate antiviral, anti-bacterial, or anti-fungal agents, if available; in cases refractory to an appropriate drug, the addition of immunosuppressive drugs to the therapeutic regimen may improve results. Mixed cryoglobulinemic disease associated with autoimmune disorders is treated with immunosuppressive drugs: combination of a corticosteroid with either cyclophosphamide, azathioprine, or mycophenolate or combination of a corticosteroid with rituximab have been used successfully to treated mixed disease associated with autoimmune disorders.
Immunosuppressant and anti-inflammatory therapy serves to stop on-going destruction of the sebaceous glands. Like other inflammatory diseases, most animals receive an initial course to stop the inflammation and treatment is tapered off to the lowest dose that keeps the disease in remission. Oral cyclosporine may be used. Corticosteroids (e.g. prednisone) are used only if pruritus is a major clinical feature.
People affected by the severest, often life-threatening, complications of cryoglobulinemic disease require urgent plasmapharesis and/or plasma exchange in order to rapidly reduce the circulating levels of their cryoglobulins. Complications commonly requiring this intervention include: hyperviscosity disease with severe symptoms of neurological (e.g. stroke, mental impairment, and myelitis) and/or cardiovascular (e.g., congestive heart failure, myocardial infarction) disturbances; vasculitis-driven intestinal ischemia, intestinal perforation, cholecystitis, or pancreatitis, causing acute abdominal pain, general malaise, fever, and/or bloody bowel movements; vasculitis-driven pulmonary disturbances (e.g. coughing up blood, acute respiratory failure, X-ray evidence of diffuse pulmonary infiltrates caused by diffuse alveolar hemorrhage); and severe kidney dysfunction due to intravascular deposition of immunoglobulins or vasculitis. Along with this urgent treatment, severely symptomatic patients are commonly started on therapy to treat any underlying disease; this treatment is often supplemented with anti-inflammatory drugs such as corticosteroids (e.g., dexamethasone) and/or immunosuppressive drugs. Cases where no underlying disease is known are also often treated with the latter corticosteroid and immunosuppressive medications.
Studies on the treatment of cryofibrinoginemic disease have involved relatively few patients, are limited primarily to case reports, and differ based on whether the disease is primary or secondary. In all cases of cryofibrinogenemic disease, however, patients should avoid the exposure of afflicted body parts to cold weather or other environmental triggers of symptoms and avoid using cigarettes or other tobacco products. In severe cases, these individuals also risk developing serious thrombotic events which lead to tissue necrosis that may result in secondary bacterial infections and require intensive antimicrobial therapy and/or amputations. Careful treatment of these developments is required.
Treatment of secondary cryofibrinoginemic disease may use the same methods used for treating the primary disease wherever necessary but focus on treating the associated infectious, malignant, premalignant, vasculitis, or autoimmune disorder with the methods prescribed for the associated disorder. Case report studies suggest that: corticosteroids and immunosuppressive drug regimens, antimicrobial therapy, and anti-neoplastic regimens can be effective treatments for controlling the cryfibrinoginemic disease in cases associated respectively with autoimmune, infectious, and premalignant/malignant disorders.
Current treatment is aimed at easing the symptoms, reducing inflammation, and controlling the immune system. The quality of the evidence for treating the oral ulcers associated with Behçet's disease, however, is poor.
High-dose corticosteroid therapy is often used for severe disease manifestations. Anti-TNF therapy such as infliximab has shown promise in treating the uveitis associated with the disease. Another Anti-TNF agent, etanercept, may be useful in people with mainly skin and mucosal symptoms.
Interferon alpha-2a may also be an effective alternative treatment, particularly for the genital and oral ulcers as well as ocular lesions. Azathioprine, when used in combination with interferon alpha-2b also shows promise, and colchicine can be useful for treating some genital ulcers, erythema nodosum, and arthritis.
Thalidomide has also been used due to its immune-modifying effect. Dapsone and rebamipide have been shown, in small studies, to have beneficial results for mucocutaneous lesions.
Given its rarity, the optimal treatment for acute optic neuropathy in Behçet's disease has not been established. Early identification and treatment is essential. Response to ciclosporin, periocular triamcinolone, and IV methylprednisone followed by oral prednisone has been reported although relapses leading to irreversible visual loss may occur even with treatment. Immunosuppressants such as interferon alpha and tumour necrosis factor antagonists may improve though not completely reverse symptoms of ocular Behçet's disease, which may progress over time despite treatment. When symptoms are limited to the anterior chamber of the eye prognosis is improved. Posterior involvement, particularly optic nerve involvement, is a poor prognostic indicator. Secondary optic nerve atrophy is frequently irreversible. Lumbar puncture or surgical treatment may be required to prevent optic atrophy in cases of intracranial hypertension refractory to treatment with immunomodulators and steroids.
IVIG could be a treatment for severe or complicated cases.
Pyoderma gangrenosum is a condition that causes tissue to become necrotic, causing deep ulcers that usually occur on the legs. When they occur, they can lead to chronic wounds. Ulcers usually initially look like small bug bites or papules, and they progress to larger ulcers. Though the wounds rarely lead to death, they can cause pain and scarring.
The disease was identified in 1930. It affects approximately 1 person in 100,000 in the population. Though it can affect people of any age, it mostly affects people in their 40s and 50s.
Glucocorticoids can be used in the short term and at the lowest dose possible for flare-ups and while waiting for slow-onset drugs to take effect.
Non-NSAID drugs to relieve pain, like paracetamol may be used to help relieve the pain symptoms; they do not change the underlying disease.
NSAIDs reduce both pain and stiffness in those with RA but do not affect the underlying disease and appear to have no effect on people's long term disease course and thus are no longer first line agents. NSAIDs should be used with caution in those with gastrointestinal, cardiovascular, or kidney problems. Use of methotrexate together with NSAIDS is safe, if adequate monitoring is done. COX-2 inhibitors, such as celecoxib, and NSAIDs are equally effective.
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
Disease-modifying antirheumatic drugs (DMARDs) are the primary treatment for RA. They are a diverse collection of drugs, grouped by use and convention. They have been found to improve symptoms, decrease joint damage, and improve overall functional abilities. DMARDs should be started early in the disease as they result in disease remission in approximately half of people and improved outcomes overall.
The following drugs are considered as DMARDs: methotrexate, hydroxychloroquine, sulfasalazine, leflunomide, TNF-alpha inhibitors (certolizumab, infliximab and etanercept), abatacept, and anakinra. Rituximab and tocilizumab are monoclonal antibodies and are also DMARDs.
The most commonly used agent is methotrexate with other frequently used agents including sulfasalazine and leflunomide. Sodium aurothiomalate (gold) and cyclosporin are less commonly used due to more common adverse effects. Agents may be used in combinations. Methotrexate is the most important and useful DMARD and is usually the first treatment. Adverse effects should be monitored regularly with toxicity including gastrointestinal, hematologic, pulmonary, and hepatic. Side effects such as nausea, vomiting or abdominal pain can be reduced by taking folic acid.
A 2015 Cochrane review found rituximab with methotrexate to be effective in improving symptoms compared to methotrexate alone. Rituximab works by depicting levels of B-cells (immune cell that is involved in inflammation). People taking rituximab had improved pain, function, reduced disease activity and reduced joint damage based on x-ray images. After 6 months, 21% more people had improvement in their symptoms using rituximab and methotrexate.
Biological agents should generally only be used if methotrexate and other conventional agents are not effective after a trial of three months. They are associated with a higher rate of serious infections as compared to other DMARDs. Biological DMARD agents used to treat rheumatoid arthritis include: tumor necrosis factor alpha (TNFα) blockers such as infliximab; interleukin 1 blockers such as anakinra, monoclonal antibodies against B cells such as rituximab, and tocilizumab T cell co-stimulation blocker such as abatacept. They are often used in combination with either methotrexate or leflunomide. Abatacept should not be used at the same time as other biologics. In those who are well controlled on TNF blockers decreasing the dose does not appear to affect overall function. Persons should be screened for latent tuberculosis before starting any TNF blockers therapy to avoid reactivation.
TNF blockers and methotrexate appear to have similar effectiveness when used alone and better results are obtained when used together. TNF blockers appear to have equivalent effectiveness with etanercept appearing to be the safest. Abatacept appears effective for RA with 20% more people improving with treatment than without but long term safety studies are yet unavailable. However, there is a lack of evidence to distinguish between the biologics available for RA. Issues with the biologics include their high cost and association with infections including tuberculosis.
Pentoxifylline is a useful add on treatment to compression stockings and may also help by itself. It works by reducing platelet aggregation and thrombus formation. Gastrointestinal disturbances were reported as a potential adverse effect.
Sulodexide, which reduces the formation of blood clots and reduces inflammation, may improve the healing of venous ulcers when taken in conjunction with proper local wound care. Further research is necessary to determine potential adverse effects, the effectiveness, and the dosing protocol for sulodexide treatment.
An oral dose of aspirin is being investigated as a potential treatment option for people with venous ulcers. A 2016 Cochrane systematic review concluded that further research is necessary before this treatment option can be confirmed to be safe and effective.
Oral zinc supplements have not been proven to be effective in aiding the healing of venous ulcers, however more research is necessary to confirm these results.
What happens after your child is diagnosed with CRMO/CNO?
Find a doctor who has experience with patients with CRMO/CNO. CRMO/CNO in children is generally treated by a pediatric rheumatologist. Ask your doctor for a referral.
Why do we treat CRMO/CNO?
- Reduce inflammation
- Prevent bone damage and bone deformities
- Decrease pain
How is CRMO/CNO treated?
CRMO/CNO is different for each patient. Not every child responds to every treatment. Your doctor may need to try several medications before finding the one that works for your child. In severe cases, doctors may combine medications to treat the disease. Your doctor will work with you and your child to help find the best treatment.
For some CRMO/CNO patients, the disease can be managed with non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are the first line treatment. However, if NSAIDs are not effective, or if your child does not tolerate NSAIDs well, second line treatments are available.
First line treatments include Naproxen (Aleve), Celecoxib (Celebrex) Meloxicam (Mobic), Piroxicam (Feldene), Indomethacin (Indocin), Diclofenac (Voltaren).
Second line treatments include corticosteroids (Prednisone/Prednisolone), Methotrexate (Otrexup, Rasuvo, Trexall), Sulfasalazine (Azulfidine), Pamidronate (Aredia), Zolendronic Acid (Zometa), Adalimumab (Humira), Etanercept (Enbrel), Infliximab (Remicade).
These medications are also used in children with other inflammatory and/or bone conditions. Side effects may occur while taking these medications. Your physician will have a discussion with you prior to starting any new treatment.
Non-elastic, ambulatory, below knee (BK) compression counters the impact of reflux on venous pump failure. Compression therapy is used for venous leg ulcers and can decrease blood vessel diameter and pressure, which increases their effectiveness, preventing blood from flowing backwards. Compression is also used to decrease release of inflammatory cytokines, lower the amount of fluid leaking from capillaries and therefore prevent swelling, and prevent clotting by decreasing activation of thrombin and increasing that of plasmin. Compression is applied using elastic bandages or boots specifically designed for the purpose.
Regarding effectiveness, compression dressings improve healing. It is not clear whether non-elastic systems are better than a multilayer elastic system. Patients should wear as much compression as is comfortable. The type of dressing applied beneath the compression does not seem to matter, and hydrocolloid is not better than simple low adherent dressings. Recently there have been clinical studies on a multi-functional botanical-based ointment in combination with compression therapy in the treatment of difficult-to-heal wounds, including venous leg ulcers.
Intermittent pneumatic compression devices may be used, but it is not clear that they are superior to simple compression dressings.
It is not clear if interventions that are aimed to help people adhere to compression therapy are effective. More research is needed in this field.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.