Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Management has three components: interventions before delivery, timing and place of delivery, and therapy after delivery.
In some cases, fetal therapy is available for the underlying condition; this may help to limit the severity of pulmonary hypoplasia. In exceptional cases, fetal therapy may include fetal surgery.
A 1992 case report of a baby with a sacrococcygeal teratoma (SCT) reported that the SCT had obstructed the outlet of the urinary bladder causing the bladder to rupture in utero and fill the baby's abdomen with urine (a form of ascites). The outcome was good. The baby had normal kidneys and lungs, leading the authors to conclude that obstruction occurred late in the pregnancy and to suggest that the rupture may have protected the baby from the usual complications of such an obstruction. Subsequent to this report, use of a vesicoamniotic shunting procedure (VASP) has been attempted, with limited success.
Often, a baby with a high risk of pulmonary hypoplasia will have a planned delivery in a specialty hospital such as (in the United States) a tertiary referral hospital with a level 3 neonatal intensive-care unit. The baby may require immediate advanced resuscitation and therapy.
Early delivery may be required in order to rescue the fetus from an underlying condition that is causing pulmonary hypoplasia. However, pulmonary hypoplasia increases the risks associated with preterm birth, because once delivered the baby requires adequate lung capacity to sustain life. The decision whether to deliver early includes a careful assessment of the extent to which delaying delivery may increase or decrease the pulmonary hypoplasia. It is a choice between expectant management and active management. An example is congenital cystic adenomatoid malformation with hydrops; impending heart failure may require a preterm delivery. Severe oligohydramnios of early onset and long duration, as can occur with early preterm rupture of membranes, can cause increasingly severe PH; if delivery is postponed by many weeks, PH can become so severe that it results in neonatal death.
After delivery, most affected babies will require supplemental oxygen. Some severely affected babies may be saved with extracorporeal membrane oxygenation (ECMO). Not all specialty hospitals have ECMO, and ECMO is considered the therapy of last resort for pulmonary insufficiency. An alternative to ECMO is high-frequency oscillatory ventilation.
Most babies with ACD have normal Apgar scores at 1 and 5 minutes, but within minutes or hours present with hypoxia and upon investigation are found to have hypoxemia and pulmonary hypertension. Initial treatments address the hypoxia, usually beginning with supplemental oxygen and arrangements for urgent transport to a neonatal intensive care unit.
Therapies that have been tried to extend life include extracorporeal membrane oxygenation and nitric oxide. These are supportive therapies for persistent pulmonary hypertension; they do not treat the ACD. The objective of therapy is to keep the baby alive long enough to obtain a lung transplant.
Several patients have survived with atypical or “patchy ACDMPV” long enough to receive lung transplants. According to a 2013 case series conducted by St. Louis Children’s Hospital, four ACDMPV patients (ages 4 months, 5 months, 9 months and 20 months of age at time of transplant) with atypical presentations of ACDMPV each underwent a successful bilateral lung transplantation (BLT). As stated in the case study, “If they survive to BLT, patients with ACDMPV can have successful outcomes” and the ACDMPV patients “are alive at last follow-up at 1, 8, 9 and 12 years of age” (as of May 2013).
According to the St. Louis Children's Hospital (the Level I pediatric trauma center and pediatric teaching hospital for the Washington University School of Medicine), which is noted worldwide for its record in pediatric pulmonary transplantation, a type of artificial lung device, the Quadrox, was used after ECMO as a bridge to a dual lung transplant in ten-month-old Eleni Scott of the St. Louis suburb of Florissant, Missouri, who after transplantation returned to her home. Doctors have said it is too early to presume it will continue to work here or work in other pediatric patients as an experiment, much less a successful, curative standard therapy, but the infant has survived thus far, meaning that there might be hope for sufferers of this rare condition. For more information, please see the link to the news release.
The first step in management is orogastric tube placement and securing the airway (intubation). The baby will usually be immediately placed on a ventilator.
Extracorporeal membrane oxygenation (ECMO) has been used as part of the treatment strategy at some hospitals. ECMO acts as a baby heart-lung bypass (though it can be used for older children as well). A venous cannula is inserted into the jugular vein or the common femoral vein(ECMO is divided into two types; (arteriovenous AV and venovenous VV), allowing the blood to exit the body and begin its trek through the ECMO circuit, it is then scrubbed, oxygenated, and passes through a filter before being returned to the body via a second cannula into the baby’s own circulatory system where it makes its rounds before returning to the ECMO circuit to be oxygenated again. In essence, the ECMO circuit acts as the baby's lungs. Babies require extra blood volume and hefty doses of blood thinners in order to keep the circuit running without clot formation, which could be potentially fatal. Even though the baby is not using her lungs, an ocillating ventilator maybe still be used to keep some air in the lungs so that they do not fully collapse while not being used. During ECMO the pulmonary artery has a chance to rest, as it were, thus hopefully reducing the presence of pulmonary hypertension, one of the biggest complication of CDH cases. CDH repair can be done while the baby is on ECMO, although blood thinners increase the risk of bleeding complications. Usually surgeons prefer to perform CDH repairs off ECMO. Once the baby is taken off ECMO the carotid artery is sealed and can no longer be used. When repairing the hernia an incision is made in the abdomen. The hernia can sometimes be simply stitched closed but in more complicated cases a patch may be required. A synthetic patch can be used but will usually require replacement later as the child grows. A more natural patch can be created by slicing and folding over a section of abdominal muscle and securing it to the existing piece of diaphragm. Any organ displacement is corrected during surgery. Though the heart and lungs will usually move back into position on their own, once displaced organs such as bowel, liver, or stomach, are out of the way. The incision is then closed. Sometimes, the incision site will be left open to allow the body to adjust to newly moved organs and the pressure associated with that, and then closed later once swelling and drainage has decreased.
Diaphragm eventration is typically repaired thoracoscopically, by a technique called plication of the diaphragm. Plication basically involves a folding of the eventrated diaphragm which is then sutured in order to “take up the slack” of the excess diaphragm tissue.
Oxygen is given with a small amount of continuous positive airway pressure ("CPAP"), and intravenous fluids are administered to stabilize the blood sugar, blood salts, and blood pressure. If the baby's condition worsens, an endotracheal tube (breathing tube) is inserted into the trachea and intermittent breaths are given by a mechanical device. An exogenous preparation of surfactant, either synthetic or extracted from animal lungs, is given through the breathing tube into the lungs. Some of the most commonly used surfactants are Survanta or its generic form Beraksurf, derived from cow lungs, which can decrease the risk of death in hospitalized very-low-birth-weight infants by 30%. Such small premature infants may remain ventilated for months. A study shows that an aerosol of a perfluorocarbon such as perfluoromethyldecalin can reduce inflammation in swine model of IRDS. Chronic lung disease including bronchopulmonary dysplasia are common in severe RDS. The etiology of BPD is problematic and may be due to oxygen, overventilation or underventilation. The mortality rate for babies greater than 27 weeks gestation is less than 20%
Extracorporeal membrane oxygenation (ECMO) is a potential treatment, providing oxygenation through an apparatus that imitates the gas exchange process of the lungs. However, newborns cannot be placed on ECMO if they are under 4.5 pounds (2 kg), because they have extremely small vessels for cannulation, thus hindering adequate flow because of limitations from cannula size and subsequent higher resistance to blood flow (compare with vascular resistance). Furthermore, in infants aged less than 34 weeks of gestation several physiologic systems are not well-developed, specially the cerebral vasculature and germinal matrix, resulting in high sensitivity to slight changes in pH, PaO, and intracranial pressure. Subsequently, preterm infants are at unacceptably high risk for intraventricular hemorrhage (IVH) if administered ECMO at a gestational age less than 32 weeks.
- The INSURE Method
Henrik Verder is the inventor and pioneer of the INSURE method, a very effective approach to managing preterm neonates with respiratory distress. The method itself has been shown, through meta-analysis; to successfully decrease the use of mechanical ventilation and lower the incidence of bronchopulmonary dysplasia (BPD). Since its conception in 1989 the INSURE method has been academically cited in more than 500 papers. The first randomised study about the INSURE method was published in 1994 and a second randomised study in infants less than 30 weeks gestation was published by the group in 1999. In the last 15 years Henrik has worked with lung maturity diagnostics on gastric aspirates obtained at birth. By combining this diagnostic method with INSURE, Henrik has worked to further improve the clinical outcome of RDS. The lung maturity tests used have been the microbubble test, lamellar body counts (LBC) and measurements of lecithin-sphingomyelin ratio (L/S) with chemometrics, which involved a collaboration with Agnar Höskuldsson.
Pulmonary hypoplasia is incomplete development of the lungs, resulting in an abnormally low number or size of bronchopulmonary segments or alveoli. A congenital malformation, it most often occurs secondary to other fetal abnormalities that interfere with normal development of the lungs. Primary (idiopathic) pulmonary hypoplasia is rare and usually not associated with other maternal or fetal abnormalities.
Incidence of pulmonary hypoplasia ranges from 9–11 per 10,000 live births and 14 per 10,000 births. Pulmonary hypoplasia is a relatively common cause of neonatal death. It also is a common finding in stillbirths, although not regarded as a cause of these.
Giving the mother glucocorticoids speeds the production of surfactant. For very premature deliveries, a glucocorticoid is given without testing the fetal lung maturity. The American College of Obstetricians and Gynecologists (ACOG), Royal College of Medicine, and other major organizations have recommended antenatal glucocorticoid treatment for women at risk for preterm delivery prior to 34 weeks of gestation. Multiple courses of glucocorticoid administration, compared with a single course, does not seem to increase or decrease the risk of death or neurodevelopmental disorders of the child.
In pregnancies of greater than 30 weeks, the fetal lung maturity may be tested by sampling the amount of surfactant in the amniotic fluid by amniocentesis, wherein a needle is inserted through the mother's abdomen and uterus. Several tests are available that correlate with the production of surfactant. These include the lecithin-sphingomyelin ratio ("L/S ratio"), the presence of phosphatidylglycerol (PG), and more recently, the surfactant/albumin (S/A) ratio. For the L/S ratio, if the result is less than 2:1, the fetal lungs may be surfactant deficient. The presence of PG usually indicates fetal lung maturity. For the S/A ratio, the result is given as mg of surfactant per gm of protein. An S/A ratio 55 indicates mature surfactant production(correlates with an L/S ratio of 2.2 or greater).
A Cochrane review concluded that "simple maternal hydration appears to increase amniotic fluid volume and may be beneficial in the management of oligohydramnios and prevention of oligohydramnios during labour or prior to external cephalic version."
In severe cases oligohydramnios may be treated with amnioinfusion during labor to prevent umbilical cord compression. There is uncertainty about the procedure's safety and efficacy, and it is recommended that it should only be performed in centres specialising in invasive fetal medicine and in the context of a multidisciplinary team.
In case of congenital lower urinary tract obstruction, fetal surgery seems to improve survival, according to a randomized yet small study.
If suspected antenatally, a consultation with a paediatric surgeon/ paediatric urologist maybe indicated to evaluate the risk and consider treatment options.
Treatment is by endoscopic valve ablation. Fetal surgery is a high risk procedure reserved for cases with severe oligohydramnios, to try to limit the associated lung underdevelopment, or pulmonary hypoplasia, that is seen at birth in these patients. The risks of fetal surgery are significant and include limb entrapment, abdominal injury, and fetal or maternal death. Specific procedures for "in utero" intervention include infusions of amniotic fluid, serial bladder aspiration, and creating a connection between the amniotic sac and the fetal bladder, or vesicoamniotic shunt.
There are three specific endoscopic treatments of posterior urethral valves:
- Vesicostomy followed by valve ablation - a stoma, or hole, is made in the urinary bladder, also known as "low diversion", after which the valve is ablated and the stoma is closed.
- Pyelostomy followed by valve ablation - stoma is made in the pelvis of the kidney as a slightly "high diversion", after which the valve is ablated and the stoma is closed
- Primary (transurethral) valve ablation - the valve is removed through the urethra without creation of a stoma
The standard treatment is primary (transurethral) ablation of the valves. Urinary diversion is used in selected cases, and its benefit is disputed.
Following surgery, the follow-up in patients with posterior urethral valve syndrome is long term, and often requires a multidisciplinary effort between paediatric surgeons/ paediatric urologists, pulmonologists, neonatologists, radiologists and the family of the patient. Care must be taken to promote proper bladder compliance and renal function, as well as to monitor and treat the significant lung underdevelopment that can accompany the disorder. Definitive treatment may also be indicated for the vesico-ureteral reflux.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
ECG leads must be placed in reversed positions on a person with dextrocardia. In addition, when defibrillating someone with dextrocardia, the pads should be placed in reverse positions. That is, instead of upper right and lower left, pads should be placed upper left and lower right.
When heart transplantation is required in a person with situs inversus, reconstruction of the venous pathways to accommodate a normal donor heart is a major, but not insurmountable, challenge.
Surgical correction should be considered in the presence of significant left to right shunting (Qp:Qs ≥ 2:1) and pulmonary hypertension. This involves creation of an inter-atrial baffle to redirect the pulmonary venous return into the left atrium. Alternatively, the anomalous vein can be re-implanted directly into the left atrium.
The outcome of Potter's Sequence is poor. A series of 23 patients in 2007 recorded 7 deaths, 4 in the neonatal period. All 16 survivors have chronic kidney disease, with half developing end stage renal failure (median age 0.3 years, range 2 days to 8.3 years). Survivors had growth impairment (44%) and cognitive and motor development delay (25%)
The first child to survive Bilateral Renal Agenesis (BRA), Abigail Rose Herrera Beutler, was born on July 2013 to US Congresswoman Jaime Herrera Beutler.
A few weeks before she was born, Dr. Jessica Bienstock, a professor of maternal-fetal medicine at Johns Hopkins Hospital, administered a series of saline solution injections into the mother's womb to help the baby's lungs to develop. After Abigail was born, the procedure was considered a success. The infant did not need artificial respiration and could breathe on her own. Her parents kept her on kidney dialysis at home until old enough for a kidney transplant. On February 8, 2016, at the age of two, Abigail received a kidney from her father at the Lucile Packard Children's Hospital Stanford in California.
While Larsen syndrome can be lethal if untreated, the prognosis is relatively good if individuals are treated with orthopedic surgery, physical therapy, and other procedures used to treat the symptoms linked with Larsen syndrome.
Treatment for Larsen syndrome varies according to the symptoms of the individual. Orthopedic surgery can be performed to correct the serious joint defects associated with Larsen syndrome. Reconstructive surgery can be used to treat the facial abnormalities. Cervical kyphosis can be very dangerous to an individual because it can cause the vertebrae to disturb the spinal cord. Posterior cervical arthrodesis has been performed on patients with cervical kyphosis, and the results have been successful Propranolol has been used to treat some of the cardiac defects associated with Marfan's syndrome, so the drug also has been suggested to treat cardiac defects associated with Larsen syndrome.
There is no standard course of treatment for cerebellar hypoplasia. Treatment depends upon the underlying disorder and the severity of symptoms. Generally, treatment is symptomatic and supportive. Balance rehabilitation techniques may benefit those experiencing difficulty with balance. Treatment is based on the underlying disorder and the symptom severity. Therapies include physical, occuptational, speech/language, visual, psych/ behavioral meds, special education.
Congenital diaphragmatic hernia has a mortality rate of 40–62%, with outcomes being more favorable in the absence of other congenital abnormalities. Individual rates vary greatly dependent upon multiple factors: size of hernia, organs involved, additional birth defects, and/or genetic problems, amount of lung growth, age and size at birth, type of treatments, timing of treatments, complications (such as infections) and lack of lung function.
Scimitar syndrome, or congenital pulmonary venolobar syndrome, is a rare congenital heart defect characterized by anomalous venous return from the right lung (to the systemic venous drainage, rather than directly to the left atrium). This anomalous pulmonary venous return can be either partial (PAPVR) or total (TAPVR). The syndrome associated with PAPVR is more commonly known as "Scimitar syndrome" after the curvilinear pattern created on a chest radiograph by the pulmonary veins that drain to the inferior vena cava. This radiographic density often has the shape of a scimitar, a type of curved sword. The syndrome was first described by Catherine Neill in 1960.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
Potter sequence is the atypical physical appearance of a baby due to oligohydramnios experienced when in the uterus. It includes clubbed feet, pulmonary hypoplasia and cranial anomalies related to the oligohydramnios. Oligohydramnios is the decrease in amniotic fluid volume sufficient to cause deformations in morphogenesis of the baby.
Oligohydramnios is the cause of Potter sequence but there are many things that can lead to oligohydramnios. It can be caused by renal diseases such as bilateral renal agenesis (BRA), atresia of the ureter or urethra causing obstruction of the urinary tract, polycystic or multicystic kidney diseases, renal hypoplasia, amniotic rupture, toxemia, or uteroplacental insufficiency from maternal hypertension.
The term "Potter sequence" was initially intended to only refer to cases caused by BRA; however, it is now commonly used by many clinicians and researchers to refer to any case that presents with oligohydramnios or anhydramnios regardless of the source of the loss of amniotic fluid.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Special educators, speech and occupational therapists, and physiotherapists can help a child develop skills in and out of school.
People with AMC look their worst at birth. AMC is considered non-progressive, so with proper medical treatment, things can improve. The joint contractures that are present will not get worse than they are at the time of birth. There is no way to completely resolve or cure AMC. But with proper treatment, most children make significant improvements in their range of motion and ability to move their limbs which enables them to do activities of daily life, and live relatively normal lives. Therapeutic interventions that are cornerstone in the treatment of AMC include: stretching and range of motion exercises, physical, occupational, and speech therapy, splinting and serial casting. Surgical intervention may also improve joint mobility and function. Other positive prognostic factors for independent walking were active hips and knees, hip flexion contractures of less than 20 degrees and knee flexion contractures less than 15 degrees without severe scoliosis.