Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Standard medical treatment consists of anticoagulants (blood thinners), diuretics, and oxygen. Lifelong anticoagulation is recommended, even after PEA. Routine inferior vena cava filter placement is not recommended.
In patients with non-operable CTEPH or persistent/recurrent PH after PEA, there is evidence for benefit from pulmonary vasodilator drug treatment. The microvascular disease component in CTEPH has provided the rationale for off-label use of drugs approved for PAH. Currently, only riociguat (a stimulator of soluble guanylate cyclase) is approved for treatment of adults with inoperable CTEPH or persistent or recurrent CTEPH after surgical treatment. Other drug trials are ongoing in patients with inoperable CTEPH, with macitentan recently proving efficacy and safety in MERIT
Prostacyclin (prostaglandin I) is commonly considered the most effective treatment for PAH. Epoprostenol (synthetic prostacyclin) is given via continuous infusion that requires a semi-permanent central venous catheter. This delivery system can cause sepsis and thrombosis. Prostacyclin is unstable, and therefore has to be kept on ice during administration. Since it has a half-life of 3 to 5 minutes, the infusion has to be continuous, and interruption can be fatal. Other prostanoids have therefore been developed. Treprostinil can be given intravenously or subcutaneously, but the subcutaneous form can be very painful. An increased risk of sepsis with intravenous Remodulin has been reported by the CDC. Iloprost is also used in Europe intravenously and has a longer half life. Iloprost was the only inhaled form of prostacyclin approved for use in the US and Europe, until the inhaled form of treprostinil was approved by the FDA in July 2009.
The dual (ET and ET) endothelin receptor antagonist bosentan was approved in 2001. Sitaxentan (Thelin) was approved for use in Canada, Australia, and the European Union, but not in the United States. In 2010, Pfizer withdrew Thelin worldwide because of fatal liver complications. A similar drug, ambrisentan is marketed as Letairis in the U.S. by Gilead Sciences.
Decision making for patients with CTEPH can be complex and needs to be managed by CTEPH teams in expert centres. CTEPH teams comprise cardiologists and pulmonologists with specialist PH training, radiologists, experienced PEA surgeons with a significant caseload of CTEPH patients per year and physicians with percutaneous interventional expertise. Currently, there are three recognised targeted treatment options available: pulmonary endarterectomy (PEA), balloon pulmonary angioplasty (BPA) and pulmonary vasodilator drug treatment for inoperable patients.
Specialist imaging using either magnetic resonance or invasive PA is necessary to determine risks and benefits of interventional treatment with PEA or BPA.
Anticoagulant therapy is the mainstay of treatment. Acutely, supportive treatments, such as oxygen or analgesia, may be required. People are often admitted to hospital in the early stages of treatment, and tend to remain under inpatient care until the INR has reached therapeutic levels. Increasingly, however, low-risk cases are managed at home in a fashion already common in the treatment of DVT. Evidence to support one approach versus the other is weak.
Usually, anticoagulant therapy is the mainstay of treatment. Unfractionated heparin (UFH), low molecular weight heparin (LMWH), or fondaparinux is administered initially, while warfarin, acenocoumarol, or phenprocoumon therapy is commenced (this may take several days, usually while the patient is in the hospital). LMWH may reduce bleeding among people with pulmonary embolism as compared to UFH according to a systematic review of randomized controlled trials by the Cochrane Collaboration. According to the same review, LMWH reduced the incidence of recurrent thrombotic complications and reduced thrombus size when compared to heparin. There was no difference in overall mortality between participants treated with LMWH and those treated with unfractionated heparin.
Warfarin therapy often requires a frequent dose adjustment and monitoring of the international normalized ratio (INR). In PE, INRs between 2.0 and 3.0 are generally considered ideal. If another episode of PE occurs under warfarin treatment, the INR window may be increased to e.g. 2.5–3.5 (unless there are contraindications) or anticoagulation may be changed to a different anticoagulant e.g. LMWH.
In patients with an underlying malignancy, therapy with a course of LMWH is favored over warfarin; it is continued for six months, at which point a decision should be reached whether ongoing treatment is required.
Similarly, pregnant women are often maintained on low molecular weight heparin until at least six weeks after delivery to avoid the known teratogenic effects of warfarin, especially in the early stages of pregnancy.
Warfarin therapy is usually continued for 3–6 months, or "lifelong" if there have been previous DVTs or PEs, or none of the usual risk factors is present. An abnormal D-dimer level at the end of treatment might signal the need for continued treatment among patients with a first unprovoked pulmonary embolus. For those with small PEs (known as subsegmental PEs) the effects of anticoagulation is unknown as it has not been properly studied as of 2014.
The treatment for cor pulmonale can include the following: antibiotics, expectorants, oxygen therapy, diuretics, digitalis, vasodilators, and anticoagulants. Some studies have indicated that Shenmai injection with conventional treatment is safe and effective for cor pulmonale (chronic).
Treatment requires diuretics (to decrease strain on the heart). Oxygen is often required to resolve the shortness of breath. Additionally, oxygen to the lungs also helps relax the blood vessels and eases right heart failure. When wheezing is present, the majority of individuals require a bronchodilator. A variety of drugs have been developed to relax the blood vessels in the lung, calcium channel blockers are used but only work in few cases and according to NICE are not recommended for use at all.
Anticoagulants are used when venous thromboembolism is present. Venesection is used in severe secondary polycythaemia (because of hypoxia), which improves symptoms though survival rate has not been proven to increase.Finally, transplantation of single/double lung in extreme cases of cor pulmonale is also an option.
When PGE is administered to a newborn, it prevents the ductus arteriosus from closing, therefore providing an additional shunt through which to provide the systemic circulation with a higher level of oxygen.
Antibiotics may be administered preventatively. However, due to the physical strain caused by uncorrected d-TGA, as well as the potential for introduction of bacteria via arterial and central lines, infection is not uncommon in pre-operative patients.
Diuretics aid in flushing excess fluid from the body, thereby easing strain on the heart.
Analgesics normally are not used pre-operatively, but they may be used in certain cases. They are occasionally used partially for their sedative effects.
Cardiac glycosides are used to maintain proper heart rhythm while increasing the strength of each contraction.
Sedatives may be used palliatively to prevent a young child from thrashing about or pulling out any of their lines.
In general, the treatment of PPH is derived from the treatment of pulmonary hypertension. The best treatment available is the combination of medical therapy and liver transplantation.
The ideal treatment for PPH management is that which can achieve pulmonary vasodilatation and smooth muscle relaxation without exacerbating systemic hypotension. Most of the therapies for PPH have been adapted from the primary pulmonary hypertension literature. Calcium channel blockers, b-blockers and nitrates have all been used – but the most potent and widely used aids are prostaglandin (and prostacyclin) analogs, phosphodiesterase inhibitors, nitric oxide and, most recently, endothelin receptor antagonists and agents capable of reversing the remodeling of pulmonary vasculature.
Inhaled nitric oxide vasodilates, decreasing pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR) without affecting systemic artery pressure because it is rapidly inactivated by hemoglobin, and improves oxygenation by redistributing pulmonary blood flow to ventilated areas of lung. Inhaled nitric oxide has been used successfully to bridge patients through liver transplantation and the immediate perioperative period, but there are two significant drawbacks: it requires intubation and cannot be used for long periods of time due to methemoglobinemia.
Prostaglandin PGE1 (Alprostadil) binds G-protein linked cell surface receptors that activate adenylate cyclase to relax vascular smooth muscle. Prostacyclin – PGI2, an arachadonic acid derived lipid mediator (Epoprostenol, Flolan, Treprostenil) – is a vasodilator and, at the same time, the most potent inhibitor of platelet aggregation. More importantly, PGI2 (and not nitrous oxide) is also associated with an improvement in splanchnic perfusion and oxygenation. Epoprostenol and ilioprost (a more stable, longer acting variation) can and does successfully bridge for patients to transplant. Epoprostenol therapy can lower PAP by 29-46% and PVR by 21-71%., Ilioprost shows no evidence of generating tolerance, increases cardiac output and improves gas exchange while lowering PAP and PVR. A subset of patients does not respond to any therapy, likely having fixed vascular anatomic changes.
Phosphodiesterase inhibitors (PDE-i) have been employed with excellent results. It has been shown to reduce mean PAP by as much as 50%, though it prolongs bleeding time by inhibiting collagen-induced platelet aggregation. Another drug, Milrinone, a Type 3 PDE-i increases vascular smooth muscle adenosine-3,5-cyclic monophosphate concentrations to cause selective pulmonary vasodilation. Also, by causing the buildup of cAMP in the myocardium, Milrinone increases contractile force, heart rate and the extent of relaxation.
The newest generation in PPH pharmacy shows great promise. Bosentan is a nonspecific endothelin-receptor antagonist capable of neutralizing the most identifiable cirrhosis associated vasoconstrictor, safely and efficaciously improving oxygenation and PVR, especially in conjunction with sildenafil. Finally, where the high pressures and pulmonary tree irritations of PPH cause a medial thickening of the vessels (smooth muscle migration and hyperplasia), one can remove the cause –control the pressure, transplant the liver – yet those morphological changes persist, sometimes necessitating lung transplantation. Imatinib, designed to treat chronic myeloid leukemia, has been shown to reverse the pulmonary remodeling associated with PPH.
An NG tube is used to deliver nourishment, and occasionally medication, to the patient. Since the tube extends right into the stomach, it can also be used to monitor how well the patient is digesting their "food". Paediatric units normally provide facilities and equipment for mothers of infant patients to pump their breastmilk, which can then be fed to the infant through the NG tube, and/or stored for later use.
Oxygen therapy is commonplace for hospitalized d-TGA patients. This may range from an oxygen mask resting on the bed nearby their head to intubation. In some cases, patients are intubated as a precaution; the machine can monitor breathing and supplement the patient as much or as little as they need.
IV's are used to deliver medication, blood products, or other fluids to the patient. Arterial lines provide a constant monitor of blood pressure, as well as a method of obtaining samples for blood gas tests; central lines can also monitor blood pressure and provide blood samples, as well as provide a means to deliver medication and nourishment; fingerpricks (or heelpricks on small babies) are used to obtain blood samples for certain tests.
A sphygmomanometer may be used for intermittent blood pressure monitoring even if a patient is being otherwise monitored using a central or arterial line.
A pulse oximeter is attached to a finger or toe and provides constant or intermittent monitoring of the blood's oxygen saturation level.
An EKG creates a visual readout of how well the heart rhythm is functioning.
Neonates without adverse symptoms may simply be monitored as outpatients, while symptomatic PDA can be treated with both surgical and non-surgical methods. Surgically, the DA may be closed by ligation (though support in premature infants is mixed), either manually tied shut, or with intravascular coils or plugs that leads to formation of a thrombus in the DA.
Devices developed by Franz Freudenthal block the blood vessel with woven structures of nitinol wire.
Because prostaglandin E2 is responsible for keeping the DA open, NSAIDS (which can inhibit prostaglandin synthesis) such as indomethacin or a special form of ibuprofen have been used to initiate PDA closure. Recent findings from a systematic review concluded that, for closure of a PDA in preterm and/or low birth weight infants, ibuprofen is as effective as Indomethacin. It also causes fewer side effects (such as transient renal insufficiency) and reduces the risk of necrotising enterocolitis. Another recent review showed that paracetamol may be effective for closure of a PDA in preterm infants.
More recently, PDAs can be closed by percutaneous interventional method (avoiding open heart surgery). A platinum coil can be deployed via a catheter through the femoral vein or femoral artery, which induces thrombosis (coil embolization). Alternatively, a PDA occluder device , composed of nitinol mesh, is deployed from the pulmonary artery through the PDA.
Some evidence suggests that indomethacin administration on the first day of life to all preterm infants reduces the risk of developing a PDA and the complications associated with PDA. Indomethacin treatment in premature infants also may reduce the need for surgical intervention.
Treatment is aimed at controlling symptoms and improving the interrupted blood flow to the affected area of the body.
Medications include:
- Antithrombotic medication. These are commonly given because thromboembolism is the major cause of arterial embolism. Examples are:
- Anticoagulants (such as warfarin or heparin) and antiplatelet medication (such as aspirin, ticlopidine, and clopidogrel) can prevent new clots from forming
- Thrombolytics (such as streptokinase) can dissolve clots
- Painkillers given intravenously
- Vasodilators to relax and dilate blood vessels.
Appropriate drug treatments successfully produces thrombolysis and removal of the clot in 50% to 80% of all cases.
Antithrombotic agents may be administered directly onto the clot in the vessel using a flexible catheter ("intra-arterial thrombolysis"). Intra-arterial thrombolysis reduces thromboembolic occlusion by 95% in 50% of cases, and restores adequate blood flow in 50% to 80% of cases.
Surgical procedures include:
- Arterial bypass surgery to create another source of blood supply
- Embolectomy, to remove the embolus, with various techniques available:
- Thromboaspiration
- Angioplasty with balloon catheterization with or without implanting a stent Balloon catheterization or open embolectomy surgery reduces mortality by nearly 50% and the need for limb amputation by approximately 35%.
- Embolectomy by open surgery on the artery
If extensive necrosis and gangrene has set in an arm or leg, the limb may have to be amputated. Limb amputation is in itself usually remarkably well tolerated, but is associated with a substantial mortality (~50%), primarily because of the severity of the diseases in patients where it is indicated.
The treatment of pulmonary atresia consists of: an IV medication called prostaglandin E1, which is used for treatment of pulmonary atresia, as it stops the ductus arteriosus from closing, allowing mixing of the pulmonary and systemic circulations, but prostaglandin E1 can be dangerous as it can cause apnea. Another example of preliminary treatment is heart catheterization to evaluate the defect or defects of the heart; this procedure is much more invasive. Ultimately, however, the individual will need to have a series of surgeries to improve the blood flow permanently. The first surgery will likely be performed shortly after birth. A shunt can be created between the aorta and the pulmonary artery to help increase blood flow to the lungs. As the child grows, so does the heart and the shunt may need to be revised in order to meet the body's requirements.
The type of surgery recommended depends on the size of the right ventricle and the pulmonary artery, if the right ventricle is small and unable to act as a pump, the surgery performed would be the Fontan procedure. In this three-stage procedure, the right atrium is disconnected from the pulmonary circulation. The systemic venous return goes directly to the lungs, by-passing the heart.Very young children with elevated pulmonary vascular resistance may not able to undergo the Fontan procedure. Cardiac catheterization may be done to determine the resistance before going ahead with the surgery.
For newborns with transposition, prostaglandins can be given to keep the ductus arteriosus open which allows mixing of the otherwise isolated pulmonary and systemic circuits. Thus oxygenated blood that recirculates back to the lungs can mix with blood that circulates throughout the body. The arterial switch operation is the definitive treatment for dextro- transposition. Rarely the arterial switch is not feasible due to particular coronary artery anatomy and an atrial switch operation is preferred.
Acute cardiogenic pulmonary edema often responds rapidly to medical treatment. Positioning upright may relieve symptoms. Loop diuretics such as furosemide or bumetanide are administered, often together with morphine or diamorphine to reduce respiratory distress. Both diuretics and morphine may have vasodilator effects, but specific vasodilators may be used (particularly intravenous glyceryl trinitrate or ISDN) provided the blood pressure is adequate.
Continuous positive airway pressure and bilevel positive airway pressure (BIPAP/NIPPV) has been demonstrated to reduce the need of mechanical ventilation in people with severe cardiogenic pulmonary edema, and may reduce mortality.
It is possible for cardiogenic pulmonary edema to occur together with cardiogenic shock, in which the cardiac output is insufficient to sustain an adequate blood pressure. This can be treated with inotropic agents or by intra-aortic balloon pump, but this is regarded as temporary treatment while the underlying cause is addressed.
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
The initial management of pulmonary edema, irrespective of the type or cause, is supporting vital functions. Therefore, if the level of consciousness is decreased it may be required to proceed to tracheal intubation and mechanical ventilation to prevent airway compromise. Hypoxia (abnormally low oxygen levels) may require supplementary oxygen, but if this is insufficient then again mechanical ventilation may be required to prevent complications. Treatment of the underlying cause is the next priority; pulmonary edema secondary to infection, for instance, would require the administration of appropriate antibiotics.
Treatment is with neonatal surgical repair, with the objective of restoring a normal pattern of blood flow. The surgery is open heart, and the patient will be placed on cardiopulmonary bypass to allow the surgeon to work on a still heart. The heart is opened and the ventricular septal defect is closed with a patch. The pulmonary arteries are then detached from the common artery (truncus arteriosus) and connected to the right ventricle using a tube (a conduit or tunnel). The common artery, now separated from the pulmonary circulation, functions as the aorta with the truncal valve operating as the aortic valve. Most babies survive this surgical repair, but may require further surgery as they grow up. For example, the conduit does not grow with the child and may need to be replaced as the child grows. Furthermore, the truncal valve is often abnormal and may require future surgery to improve its function.
There have been cases where the condition has been diagnosed at birth and surgical intervention is an option. A number of these cases have survived well into adulthood.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
Simple l-TGA has a very good prognosis, with many individuals being asymptomatic and not requiring surgical correction.
In a number of cases, the (technically challenging) "double switch operation" has been successfully performed to restore the normal blood flow through the ventricles.
How well a patient does depends on the location of the clot and to what extent the clot has blocked blood flow. Arterial embolism can be serious if not treated promptly.
Without treatment, it has a 25% to 30% mortality rate. The affected area can be permanently damaged, and up to approximately 25% of cases require amputation of an affected extremity.
Arterial emboli may recur even after successful treatment.
Oxygen first aid treatment is useful for suspected gas embolism casualties or divers who have made fast ascents or missed decompression stops. Most fully closed-circuit rebreathers can deliver sustained high concentrations of oxygen-rich breathing gas and could be used as an alternative to pure open-circuit oxygen resuscitators. However pure oxygen from an oxygen cylinder through a Non-rebreather mask is the optimal way to deliver oxygen to a decompression illness patient.
Recompression is the most effective, though slow, treatment of gas embolism in divers. Normally this is carried out in a recompression chamber. As pressure increases, the solubility of a gas increases, which reduces bubble size by accelerating absorption of the gas into the surrounding blood and tissues. Additionally, the volumes of the gas bubbles decrease in inverse proportion to the ambient pressure as described by Boyle's law. In the hyperbaric chamber the patient may breathe 100% oxygen, at ambient pressures up to a depth equivalent of 18 msw. Under hyperbaric conditions, oxygen diffuses into the bubbles, displacing the nitrogen from the bubble and into solution in the blood. Oxygen bubbles are more easily tolerated. Diffusion of oxygen into the blood and tissues under hyperbaric conditions supports areas of the body which are deprived of blood flow when arteries are blocked by gas bubbles. This helps to reduce ischemic injury. The effects of hyperbaric oxygen also counteract the damage that can occur with reperfusion of previously ischemic areas; this damage is mediated by leukocytes (a type of white blood cell).
Mechanical clot retrieval and catheter-guided thrombolysis are used in certain situations.
It is initially treated with medications, including diuretics, and medications for blood pressure control. When high-grade renal artery stenosis is documented and blood pressure cannot be controlled with medication, or if renal function deteriorates, surgery may be resorted to. The most commonly used procedure is a minimally-invasive angioplasty with or without stenting. It is unclear if this approach yields better results than the use of medications alone. It is a relatively safe procedure. If all else fails and the kidney is thought to be worsening hypertension and revascularization with angioplasty or surgery does not work, then surgical removal of the affected kidney (nephrectomy) may significantly improve high blood pressure.