Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Alternatives to fosfomycin include nitrofurantoin, pivmecillinam, and co-amoxiclav in oral treatment of urinary-tract infections associated with extended-spectrum beta-lactamase.
In a separate study, CRE were treated with colistin, amikacin, and tigecycline, and emphasizes the importance of using gentamicin in patients undergoing chemotherapy or stem-cell therapy procedures.
While colistin had shown promising activity against carbapenemase-producing isolates, more recent data suggest a resistance to it is already emerging and it will soon become ineffective.
Using another antibiotic concomitantly with carbapenem can help prevent the development of carbapenem resistance. One specific study showed a higher rate of carbapenem resistance when using meropenem alone compared with combination therapy with moxifloxacin.
In addition, several drugs were tested to gauge their effectiveness against CRE infections. "In vitro" studies have shown that rifampin has synergistic activity against carbapenem-resistant "E. coli" and "K. pneumoniae". However, more data are needed to determine if rifampin is effective in a clinical setting.
Several new agents are in development. The main areas where scientists are focusing is new β-lactamase inhibitors with activity against carbapenemases. Some of these include MK-7655, NXL104, and 6-alkylidenepenam sulfones. The exact way they affect the carbapenemases is unknown. Another experimental agent with activity against CRE is eravacycline.
Tigecycline, a member of the glycylcyclines antibiotics, has proven to be an effective therapy against Enterobacteriaceae that typically display tetracycline resistance, because tigecycline has a higher binding affinity with ribosomal sites than tetracycline has. Tigecycline is capable of killing almost all of the ESBLs and multidrug-resistant (MDR) "E. coli" isolates and the large majority of ESBL and MDR isolates of "Klebsiella" species.
A 2008 review of 42 studies of "in vitro" susceptibility of bacteria to tigecycline showed that MDR "K. pneumoniae" and "E. coli", including those that were carbapenem resistant, were susceptible more than 90% of the time. A limited number of patients have been treated with tigecycline, but the FDA has approved it in certain cases with synergies of other drugs. The limited number of patients indicates that more trials are needed to determine the overall clinical effectiveness.
Although tigecycline is the one of the first lines of defense against carbapenemase-producing isolates, negative clinical outcomes with tigecycline have occurred. Both urinary tract and primary blood infections can make tigecycline ineffective, because it has limited penetration and rapid tissue diffusion after being intravenously infused, respectively.
The chances of drug resistance can sometimes be minimized by using multiple drugs simultaneously. This works because individual mutations can be independent and may tackle only one drug at a time; if the individuals are still killed by the other drugs, then the mutations cannot persist. This was used successfully in tuberculosis. However, cross resistance where mutations confer resistance to two or more treatments can be problematic.
For antibiotic resistance, which represents a widespread problem nowadays, drugs designed to block the mechanisms of bacterial antibiotic resistance are used. For example, bacterial resistance against beta-lactam antibiotics (such as penicillins and cephalosporins) can be circumvented by using antibiotics such as nafcillin that are not susceptible to destruction by certain beta-lactamases (the group of enzymes responsible for breaking down beta-lactams). Beta-lactam bacterial resistance can also be dealt with by administering beta-lactam antibiotics with drugs that block beta-lactamases such as clavulanic acid so that the antibiotics can work without getting destroyed by the bacteria first. Recently, researchers have recognized the need for new drugs that inhibit bacterial efflux pumps, which cause resistance to multiple antibiotics such as beta-lactams, quinolones, chloramphenicol, and trimethoprim by sending molecules of those antibiotics out of the bacterial cell. Sometimes a combination of different classes of antibiotics may be used synergistically; that is, they work together to effectively fight bacteria that may be resistant to one of the antibiotics alone.
Destruction of the resistant bacteria can also be achieved by phage therapy, in which a specific bacteriophage (virus that kills bacteria) is used.
There is research being done using antimicrobial peptides. In the future, there is a possibility that they might replace novel antibiotics.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.
To limit the development of antimicrobial resistance, it has been suggested to:
- Use the appropriate antimicrobial for an infection; e.g. no antibiotics for viral infections
- Identify the causative organism whenever possible
- Select an antimicrobial which targets the specific organism, rather than relying on a broad-spectrum antimicrobial
- Complete an appropriate duration of antimicrobial treatment (not too short and not too long)
- Use the correct dose for eradication; subtherapeutic dosing is associated with resistance, as demonstrated in food animals.
The medical community relies on education of its prescribers, and self-regulation in the form of appeals to voluntary antimicrobial stewardship, which at hospitals may take the form of an antimicrobial stewardship program. It has been argued that depending on the cultural context government can aid in educating the public on the importance of restrictive use of antibiotics for human clinical use, but unlike narcotics, there is no regulation of its use anywhere in the world at this time. Antibiotic use has been restricted or regulated for treating animals raised for human consumption with success, in Denmark for example.
Infection prevention is the most efficient strategy of prevention of an infection with a MDR organism within a hospital, because there are few alternatives to antibiotics in the case of an extensively resistant or panresistant infection; if an infection is localized, removal or excision can be attempted (with MDR-TB the lung for example), but in the case of a systemic infection only generic measures like boosting the immune system with immunoglobulins may be possible. The use of bacteriophages (viruses which kill bacteria) has no clinical application at the present time.
It is necessary to develop new antibiotics over time since the selection of resistant bacteria cannot be prevented completely. This means with every application of a specific antibiotic, the survival of a few bacteria which already got a resistance gene against the substance is promoted, and the concerning bacterial population amplifies. Therefore, the resistance gene is farther distributed in the organism and the environment, and a higher percentage of bacteria does no longer respond to a therapy with this specific antibiotic.
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.
HIV is the prime example of MDR against antivirals, as it mutates rapidly under monotherapy.
Influenza virus has become increasingly MDR; first to amantadenes, then to neuraminidase inhibitors such as oseltamivir, (2008-2009: 98.5% of Influenza A tested resistant), also more commonly in people with weak immune systems. Cytomegalovirus can become resistant to ganciclovir and foscarnet under treatment, especially in immunosuppressed patients. Herpes simplex virus rarely becomes resistant to acyclovir preparations, mostly in the form of cross-resistance to famciclovir and valacyclovir, usually in immunosuppressed patients.
Treatment of CAP in children depends on the child's age and the severity of illness. Children under five are not usually treated for atypical bacteria. If hospitalization is not required, a seven-day course of amoxicillin is often prescribed, with co-trimaxazole an alternative when there is allergy to penicillins. Further studies are needed to confirm the efficacy of newer antibiotics. With the increase in drug-resistant Streptococcus pneumoniae, antibiotics such as cefpodoxime may become more popular. Hospitalized children receive intravenous ampicillin, ceftriaxone or cefotaxime, and a recent study found that a three-day course of antibiotics seems sufficient for most mild-to-moderate CAP in children.
CAP is treated with an antibiotic that kills the offending microorganism and by managing complications. If the causative microorganism is unidentified (often the case), the laboratory identifies the most-effective antibiotic; this may take several days.
Health professionals consider a person's risk factors for various organisms when choosing an initial antibiotic. Additional consideration is given to the treatment setting; most patients are cured by oral medication, while others must be hospitalized for intravenous therapy or intensive care.
Therapy for older children and adults generally includes treatment for atypical bacteria: typically a macrolide antibiotic (such as azithromycin or clarithromycin) or a quinolone, such as levofloxacin. Doxycycline is the antibiotic of choice in the UK for atypical bacteria, due to increased clostridium difficile colitis in hospital patients linked to the increased use of clarithromycin.
Management of Bleeding Canker of Chestnut is not definitive and treatments are currently being investigated. Because the pathogen can be spread by contaminated tools, cultural practices are important to management. Tools should be cleaned and used with caution after being used on infected trees. Recovery of trees is possible, so management strategies are focused on keeping trees healthy so they can recover. One recommendation is to add fertilizer that contains Potassium phosphate. Soil de-compaction, providing good drainage, and mulching to minimize fluctuation of soil temperature and moisture are all ways to improve or maintain tree health and to manage the pathogen.
Chemical methods can be used to help the tree maintain health and avoid progress of the disease. Management strategies are currently being developed. A study performed in 2015 examined the infection on trees and found that 41 F1 progeny parent tree source had the most promising lines of viability for resistance.
Surgical drainage is usually indicated for prostatic abscesses and septic arthritis, may be indicated for parotid abscesses, and is not usually indicated for hepatosplenic abscesses. In bacteraemic melioidosis unresponsive to intravenous antibiotic therapy, splenectomy has been attempted, but only anecdotal evidence supports this practice.
Prior to 1989, the standard treatment for acute melioidosis was a three-drug combination of chloramphenicol, co-trimoxazole and doxycycline; this regimen is associated with a mortality rate of 80% and is no longer be used unless no other alternatives are available. All three drugs are bacteriostatic (they stop the bacterium from growing, but do not kill it) and the action of co-trimoxazole antagonizes both chloramphenicol and doxycycline.
Usually initial therapy is empirical. If sufficient reason to suspect influenza, one might consider oseltamivir. In case of legionellosis, erythromycin or fluoroquinolone.
A third generation cephalosporin (ceftazidime) + carbapenems (imipenem) + beta lactam & beta lactamase inhibitors (piperacillin/tazobactam)
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
Antibiotics are the treatment of choice for bacterial pneumonia, with ventilation (oxygen supplement) as supportive therapy. The antibiotic choice depends on the nature of the pneumonia, the microorganisms most commonly causing pneumonia in the geographical region, and the immune status and underlying health of the individual. In the United Kingdom, amoxicillin is used as first-line therapy in the vast majority of patients acquiring pneumonia in the community, sometimes with added clarithromycin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, clarithromycin, azithromycin, or fluoroquinolones as single therapy have displaced the amoxicillin as first-line therapy.
Local patterns of antibiotic-resistance always need to be considered when initiating pharmacotherapy. In hospitalized individuals or those with immune deficiencies, local guidelines determine the selection of antibiotics.
Treatment of VAP should be matched to known causative bacteria. However, when VAP is first suspected, the bacteria causing infection is typically not known and broad-spectrum antibiotics are given (empiric therapy) until the particular bacterium and its sensitivities are determined. Empiric antibiotics should take into account both the risk factors a particular individual has for resistant bacteria as well as the local prevalence of resistant microorganisms. If a person has previously had episodes of pneumonia, information may be available about prior causative bacteria. The choice of initial therapy is therefore entirely dependent on knowledge of local flora and will vary from hospital to hospital. Treatment of VAP with a single antibiotic has been reported to result in similar outcomes as with a combination of more than one antibiotics, in terms of cure rates, duration of ICU stay, mortality and adverse effects.
Risk factors for infection with an MDR strain include ventilation for more than five days, recent hospitalization (last 90 days), residence in a nursing home, treatment in a hemodialysis clinic, and prior antibiotic use (last 90 days).
Possible empirical therapy combinations include (but are not limited to):
- vancomycin/linezolid and ciprofloxacin,
- cefepime and gentamicin/amikacin/tobramycin
- vancomycin/linezolid and ceftazidime
- Ureidopenicillin plus β-lactamase inhibitor such as piperacillin/tazobactam or ticarcillin/clavulanate
- a carbapenem (e.g., imipenem or meropenem)
Therapy is typically changed once the causative bacteria are known and continued until symptoms resolve (often 7 to 14 days). For patients with VAP not caused by nonfermenting Gram-negative bacilli (like Acinetobacter, Pseudomonas aeruginosa) the available evidence seems to support the use of short-course antimicrobial treatments (< or =10 days).
People who do not have risk factors for MDR organisms may be treated differently depending on local knowledge of prevalent bacteria. Appropriate antibiotics may include ceftriaxone, ciprofloxacin, levofloxacin, or ampicillin/sulbactam.
As of 2005, there is ongoing research into inhaled antibiotics as an adjunct to conventional therapy. Tobramycin and polymyxin B are commonly used in certain centres but there is no clinical evidence to support their use.
"Streptococcus pneumoniae" — amoxicillin (or erythromycin in patients allergic to penicillin); cefuroxime and erythromycin in severe cases.
"Staphylococcus aureus" — flucloxacillin (to counteract the organism's β-lactamase).
There are very few things that can be done to control the spread of bacterial soft rots, and the most effective of them have to do with simply keeping sanitary growing practices.
Storage warehouses should be removed of all plant debris, and the walls and floors disinfected with either formaldehyde or copper sulfate between harvests. Injury to plant tissues should be avoided as much as possible, and the humidity and temperature of the storage facility should be kept low using an adequate ventilation system. These procedures have proven themselves to be very effective in the control of storage soft rot of potato in Wisconsin.
It also helps if plants are planted in well-drained soils, at intervals appropriate for adequate ventilation between plants. Few varieties are resistant to the disease and none are immune, so rotating susceptible plants with non-susceptible ones like cereals is a practice positive to limiting soft rot infection.
The control of specific insect vectors is also a good way of controlling disease spread in the field and in storage. Soil and foliage insecticide treatment helps controls the bugs that frequently cause wounds and disseminate the bacteria.
Patients with HCAP are more likely than those with community-acquired pneumonia to receive inappropriate antibiotics that do not target the bacteria causing their disease.
In 2002, an expert panel made recommendations about the evaluation and treatment of probable nursing home-acquired pneumonia. They defined probably pneumonia, emphasized expedite antibiotic treatment (which is known to improve survival) and drafted criteria for the hospitalization of willing patients.
For initial treatment in the nursing home, a fluoroquinolone antibiotic suitable for respiratory infections (moxifloxacin, for example), or amoxicillin with clavulanic acid plus a macrolide has been suggested. In a hospital setting, injected (parenteral) fluoroquinolones or a second- or third-generation cephalosporin plus a macrolide could be used. Other factors that need to be taken into account are recent antibiotic therapy (because of possible resistance caused by recent exposure), known carrier state or risk factors for resistant organisms (for example, known carrier of MRSA or presence of bronchiectasis predisposing to Pseudomonas aeruginosa), or suspicion of possible Legionella pneumophila infection (legionnaires disease).
In 2005, the American Thoracic Society and Infectious Diseases Society of America have published guidelines suggesting antibiotics specifically for HCAP. The guidelines recommend combination therapy with an agent from each of the following groups to cover for both "Pseudomonas aeruginosa" and MRSA. This is based on studies using sputum samples and intensive care patients, in whom these bacteria were commonly found.
- cefepime, ceftazidime, imipenem, meropenem or piperacillin–tazobactam; plus
- ciprofloxacin, levofloxacin, amikacin, gentamicin, or tobramycin; plus
- linezolid or vancomycin
In one observational study, empirical antibiotic treatment that was not according to international treatment guidelines was an independent predictor of worse outcome among HCAP patients.
Guidelines from Canada suggest that HCAP can be treated like community-acquired pneumonia with antibiotics targeting Streptococcus pneumoniae, based on studies using blood cultures in different settings which have not found high rates of MRSA or Pseudomonas.
Besides prompt antibiotic treatment, supportive measure for organ failure (such as cardiac decompensation) are also important. Another consideration goes to hospital referral; although more severe pneumonia requires admission to an acute care facility, this also predisposes to hazards of hospitalization such as delirium, urinary incontinence, depression, falls, restraint use, functional decline, adverse drug effects and hospital infections. Therefore, mild pneumonia might be better dealt with inside the long term care facility. In patients with a limited life expectancy (for example, those with advanced dementia), end-of-life pneumonia also requires recognition and appropriate, palliative care.
Bumblefoot is so named because of the characteristic "bumbles" or lesions, as well as swelling of the foot pad, symptomatic of an infection. Topical antiseptics in addition to oral or injected antibiotics may be used to combat the infection, which if left untreated may be fatal.
General biocides such as copper, Junction, or ZeroTol offer a potential solution to bacterial wilt of turf grass, however such chemical control ages must be applied after every mowing which may be economically impractical and ultimately phytotoxic. If bacterial wilt is present of the golf course, the best option may be to designate a mower for use on infected greens only in order to prevent the spread of the pathogen to other greens. Other viable methods include simply limiting the number of wounds the plant incurs, thereby limiting entry sites for the pathogen. A simple example would be less frequent mowing. It has also been proven that the disease is most devastating in grass cut to a length of between 1/8 and 3/16 of an inch, but less so in grass over 1/4 of an inch in length or longer, which presents an additional argument for limiting mowing. Another example is limiting sand topdressing as this is also a very abrasive technique which can create small wounds which allow entry of bacteria into the plant.
A major factor complicating the control of Xanthomonas campestris pv. graminis is weather. While it is not possible to control the weather per se, a study found great decreases in pathogen efficacy at temperatures below 20 °C, suggesting that cooling measures may be effective in combating this pathogen.
Ideally, resistant strains of the host plant should be used to control such a plant pathogen, however no resistant cultivars of turf grass have been identified to date. While no completely resistant cultivars exist, golf course owners can find solace in the fact that certain cultivars such as Penncross and Penneagle are more resistant to bacterial wilt and may thus reduce the need for frequent chemical applications and other cultural controls. Researchers are making gains towards the identification of resistant cultivars as evidenced by the finding that variation in genetic linkage groups 1, 4, and 6 accounted for over 43% of resistance among Italian rye grass.
A 1987 study found evidence of a possible biocontrol strategy for bacterial wilt of turf grass. The researchers found that antiserum to Pseudomonas fluorescens or Erwinia herbicola from hosts which have survived infections by the corresponding pathogens is capable of reducing wilt symptoms in turf grass caused by Xanthomonas campestris pv. graminis. The researchers did note, however, that while it is important to ensure the presence of a higher number of competing bacterial cells in order to reduce symptoms, one should take care to avoid over-infecting the host with a new bacterial pathogen.
Further gains towards host resistance were made in 2001 when researchers found that inoculation of meadow fescue during breeding with a single aggressive strain of the bacterial wilt pathogen greatly increased resistance in offspring, thereby demonstrating the potential of selective breeding to reduce bacterial wilt pathogenesis on turf and rye grasses.
Pseudomonas infection refers to a disease caused by one of the species of the genus "Pseudomonas".
"Pseudomonas sp. KUMS3" could be considered
as an opportunistic pathogen, which can survive on the
fish surface or in water or in the gut and may cause disease
when unfavorable conditions develop.
"P. aeruginosa" is an opportunistic human pathogen, most commonly affecting immunocompromised patients, such as those with cystic fibrosis or AIDS. Infection can affect many different parts of the body, but infections typically target the respiratory tract (e.g. patients with CF or those on mechanical ventilation), causing bacterial pneumonia. In a surveillance study between 1986 and 1989, P. aeruginosa was the third leading cause of all nosocomial infections, and specifically the number one leading cause of hospital-acquired pneumonia and third leading cause of hospital-acquired UTI. Treatment of such infections can be difficult due to multiple antibiotic resistance, and in the United States, there was an increase in MDRPA (Multidrug-resistant "Pseudomonas aeruginosa") resistant to ceftazidime, ciprofloxacin, and aminoglycosides, from 0.9% in 1994 to 5.6% in 2002.
"P. oryzihabitans" can also be a human pathogen, although infections are rare. It can cause peritonitis, endophthalmitis, septicemia and bacteremia. Similar symptoms although also very rare can be seen by infections of "P. luteola".
"P. plecoglossicida" is a fish pathogenic species, causing hemorrhagic ascites in the ayu ("Plecoglossus altivelis"). "P. anguilliseptica" is also a fish pathogen.
Due to their hemolytic activity, even non-pathogenic species of "Pseudomonas" can occasionally become a problem in clinical settings, where they have been known to infect blood transfusions.