Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recent case report studies suggest that treatment regimens which include a proteasome inhibitor drug, particularly bortezomib, and/or autologous stem-cell transplantation have improved pPCL survival. For example, 28 patients treated with a bortezomib-based induction regimen followed by autologous stem-cell transplantation and then a maintenance regimen of lenaldomide (an immunosuppressant related to thalidomide), bortezomib, and dexamethasone (a corticosteroid) has a progression free survival rate of 66% at 3 years and an overall survival rate of 73% at 4 years. In one study, patients receiving intensive chemotherapy plus autologous stem-cell transplantation had a median survival of 34 months while those receiving chemotherapy alone had a median survival of 11 months. Two other studies that included bortezomib in their chemotherapy regimens likewise found that the addition of autologous stem-cell transplantation improved results. Current recommendations for treating pPCL often include induction with a three drug regimen such as borezomib-lenalidomide-dexamethasone followed by autologous stem-cell transplantion and consolidation/maintenance with of combination of immunomodulator agents (e.g. thalidomide, lenalidomide, or pomalidomide) plus a proteasome inhibitor (bortezomib, ixazomib, or carfilzomib.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
As the end stage of multiple myeloma that has failed or broken through one or more therapeutic regimens, sPCL continues to be highly refractory to various treatment regimens (<50%), very short response times of these regiments, and poor overall survival rates (median survival of 2-8 to months). Patients with sPCL may have short-lived responses to treatment regimens (as communicated in case reports) that include bortezomid but there are no established therapeutic regimens that have clearly been shown to improve their overall or median survival.
Treatment of LPI consists of protein-restricted diet and supplementation with oral citrulline. Citrulline is a neutral amino acid that improves the function of the urea cycle and allows sufficient protein intake without hyperammonemia. Under proper dietary control and supplementation, the majority of the LPI patients are able to have a nearly normal life. However, severe complications including pulmonary alveolar proteinosis and renal insufficiency may develop even with proper treatment.
Fertility appears to be normal in women, but mothers with LPI have an increased risk for complications during pregnancy and delivery.
The therapy of an acute TTP episode has to be started as early as possible. The standard treatment is the daily replacement of the missing ADAMTS13 protease in form of plasma infusions or in more severe episodes by plasma exchange. In the latter the patients plasma is replaced by donated plasma. The most common sources of ADAMTS13 is platelet-poor fresh frozen plasma (FFP) or solvent-detergent plasma.
The benefit of plasma exchange compared to plasma infusions alone may result from the additional removal of ULVWF. In general both plasma therapies are well tolerated, several mostly minor complications may be observed. The number of infusion/exchange sessions needed to overcome a TTP episode are variable but usually take less than a week in USS. The intensive plasma-therapy is generally stopped when platelet count increases to normal levels and is stable over several days.
Most people, including those treated with ASCT, will relapse after initial treatment. Maintenance therapy using a prolonged course of low toxicity medications is often used to prevent relapse. A 2017 meta-analysis showed that post ASCT maintenance therapy with lenalidomide improved progression free survival and overall survival in people at standard risk. A 2012 clinical trial showed that people with intermediate and high risk disease benefit from a bortezomib based maintenance regimen.
The natural history of myeloma is of relapse following treatment. This may be attributed to tumor heterogeneity. Depending on the patient's condition, the prior treatment modalities used and the duration of remission, options for relapsed disease include re-treatment with the original agent, use of other agents (such as melphalan, cyclophosphamide, thalidomide or dexamethasone, alone or in combination), and a second autologous stem cell transplant.
Later in the course of the disease, "treatment resistance" occurs. This may be a reversible effect, and some new treatment modalities may re-sensitize the tumor to standard therapy. For patients with "relapsed disease", bortezomib is a recent addition to the therapeutic arsenal, especially as second line therapy, since 2005. Bortezomib is a proteasome inhibitor. Also, lenalidomide (Revlimid), a less toxic thalidomide analog, is showing promise for treating myeloma. The newly approved thalidomide derivative pomalidomide (Pomalyst in the U.S.) may be used for relapsed and refractory multiple myeloma.
In the 21st century, more patients have survived longer, as a result of stem cell transplant (with their own or a donor's) and treatments combining bortezomib (Velcade), dexamethasone and melphalan or cyclophosphamide. This seems to maintain the monoclonal peak at a reasonable level. Survival expectancy has risen. New treatments are under development.
Kidney failure in multiple myeloma can be acute (reversible) or chronic (irreversible). Acute kidney failure typically resolves when the calcium and paraprotein levels are brought under control. Treatment of chronic kidney failure is dependent on the type of kidney failure and may involve dialysis.
Several newer options are approved for the management of advanced disease:
- ixazomib — an orally available proteasome inhibitor indicated in combination with lenalidomide and dexamethasone in people who have received at least one prior therapy;
- panobinostat — an orally available histone deacetylase inhibitor used in combination with bortezomib and dexamethasone in people who have received at least 2 prior chemotherapy regimens, including bortezomib and an immunomodulatory agent (such as lenalidomide or pomalidomide);
- carfilzomib — a proteasome inhibitor that is indicated:
- as a single agent for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy;
- in combination with dexamethasone or with lenalidomide+dexamethasone for the treatment of patients with relapsed or refractory multiple myeloma who have received one to three lines of therapy;
- elotuzumab — an immunostimulatory humanized monoclonal antibody against SLAMF7 (also known as CD319). It is FDA-approved for the treatment of patients who have received one to three prior therapies (in combination with lenalidomide and dexamethasone);
- daratumumab — a monoclonal antibody against CD38 indicated for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy including a proteasome inhibitor and an immunomodulatory agent or who are double refractory to a proteasome inhibitor and an immunomodulatory agent.
Not all affected patients seem to need a regular preventive plasma infusion therapy, especially as some reach longterm remission without it. Regular plasma infusions are necessary in patients with frequent relapses and in general situations with increased risk to develop an acute episode (as seen above) such as pregnancy. Plasma infusions are given usually every two to three weeks to prevent acute episodes of USS but are often individually adapted.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.
Studies on the treatment of cryofibrinoginemic disease have involved relatively few patients, are limited primarily to case reports, and differ based on whether the disease is primary or secondary. In all cases of cryofibrinogenemic disease, however, patients should avoid the exposure of afflicted body parts to cold weather or other environmental triggers of symptoms and avoid using cigarettes or other tobacco products. In severe cases, these individuals also risk developing serious thrombotic events which lead to tissue necrosis that may result in secondary bacterial infections and require intensive antimicrobial therapy and/or amputations. Careful treatment of these developments is required.
The treatment or management of cachexia depends on the underlying causes, the general prognosis and other person related factors. Reversible causes, underlying diseases and contributing factors are treated if possible and acceptable. A growing body of evidence supports the efficacy of (HMB) as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength that occurs in hypercatabolic disease states such as cachexia; consequently, it is recommended that both the prevention and treatment of muscle wasting conditions include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Progestins such as megestrol acetate are a treatment option in refractory cachexia with anorexia as a major symptom.
Cachexia occurs less frequently now in HIV/AIDS than in the past due to the advent of highly active antiretroviral therapy (HAART). Treatment involving different combinations for cancer cachexia is recommended in Europe, as a combination of nutrition, medication and non-drug-treatment may be more effective than monotherapy. Non-drug therapies which have been shown to be effective in cancer induced cachexia include nutritional counselling, psychotherapeutic interventions, and physical training. Anabolic-androgenic steroids like oxandrolone may be beneficial in cancer cachexia but their use is recommended for maximal 2 weeks since a longer duration of treatment increases the burden from side effects.
Other drugs that have been used or are being investigated in cachexia therapy, but which lack conclusive evidence of efficacy or safety, and are not generally recommended include:
- Thalidomide and cytokine antagonists
- Cannabinoids
- Omega-3 fatty acids, including eicosapentaenoic acid (EPA)
- Non-steroidal anti-inflammatory drugs
- Prokinetics
- Ghrelin and ghrelin receptor agonist
- Anabolic catabolic transforming agents such as MT-102
- Selective androgen receptor modulators
- Cyproheptadine
- Hydrazine
Medical marijuana has been allowed for the treatment of cachexia in some US states, such as Illinois, Maryland, Delaware, Nevada, Michigan, Washington, Oregon, California, Colorado, New Mexico, Arizona, Vermont, New Jersey, Rhode Island, Maine, and New York Hawaii and Connecticut.
There is insufficient evidence to support the use of oral fish oil for the management of cachexia associated with advanced cancer.
Treatment of LPLD has two different objectives: immediate prevention of pancreatitis attacks and long term reduction of cardiovascular disease risk. Treatment is mainly based on medical nutrition therapy to maintain plasma triglyceride concentration below 11,3 mmol/L (1000 mg/dL). Maintenance of triglyceride levels below 22,6 mmol/L (2000 mg/dL) prevents in general from recurrent abdominal pain.
Strict low fat diet and avoidance of simple carbohydrates
Restriction of dietary fat to not more than 20 g/day or 15% of the total energy intake is usually sufficient to reduce plasma triglyceride concentration, although many patients report that to be symptom free a limit of less than 10g/day is optimal. Simple carbohydrates should be avoided as well. Medium-chain triglycerides can be used for cooking, because they are absorbed into the portal vein without becoming incorporated into chylomicrons. Fat-soluble vitamins A, D, E, and K, and minerals should be supplemented in patients with recurrent pancreatitis since they often have deficiencies as a result of malabsorption of fat. However, the diet approach is difficult to sustain for many of the patients.
Lipid lowering drugs
Lipid-lowering agents such as fibrates and omega-3-fatty acids can be used to lower TG levels in LPLD, however those drugs are very often not effective enough to reach treatment goals in LPLD patients. Statins should be considered to lower elevated non-HDL-Cholesterol.
Additional measures are avoidance of agents known to increase endogenous triglyceride levels, such as alcohol, estrogens, diuretics, isotretinoin, anidepressants (e.g. sertraline) and b-adrenergic blocking agents.
Gene therapy
In 2012, the European Commission approved alipogene tiparvovec (Glybera), a gene therapy for adults diagnosed with familial LPLD (confirmed by genetic testing) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It was the first gene therapy to receive marketing authorization in Europe; it was priced at about $1 million per treatment, and as of 2016, only one person had been treated with it.
Additional drugs found to be affected by grapefruit juice include, but are not limited to:
- Some statins, including atorvastatin (Lipitor), lovastatin (Mevacor) and simvastatin (Zocor, Simlup, Simcor, Simvacor)
- (In contrast, pravastatin (Pravachol), fluvastatin (Lescol) and rosuvastatin (Crestor) are unaffected by grapefruit.)
- Anti-arrhythmics including amiodarone (Cordarone), dronedarone (Multaq), quinidine (Quinidex, Cardioquin, Quinora), disopyramide (Norpace), propafenone (Rythmol) and carvedilol (Coreg)
- Amlodipine: Grapefruit increases the available amount of the drug in the blood stream, leading to an unpredictable increase in antihypertensive effects.
- Anti-migraine drugs ergotamine (Cafergot, Ergomar), amitriptyline (Elavil, Endep, Vanatrip) and nimodipine (Nimotop)
- Erectile dysfunction drugs sildenafil (Viagra), tadalafil (Cialis) and vardenafil (Levitra)
- Acetaminophen/paracetamol (Tylenol) concentrations were found to be increased in murinae blood by white and pink grapefruit juice, with the white juice acting faster. Interestingly, "the bioavailability of paracetamol was significantly reduced following multiple GFJ administration" in mice and rats. This suggests that repeated intake of grapefruit juice reduces the efficacy and bioavailability of acetaminophen/paracetamol in comparison to a single dose of grapefruit juice which conversely increases the efficacy and bioavailability of acetaminophen/paracetamol.
- Anthelmintics: Used for treating certain parasitic infections; includes praziquantel
- Apremilast (Otezla): Used to treat psoriasis.
- Buprenorphine: Metabolized into norbuprenorphine by CYP3A4
- Buspirone (Buspar): Grapefruit juice increased peak and AUC plasma concentrations of buspirone 4.3- and 9.2, respectively, in a randomized, 2-phase, ten-subject crossover study.
- Codeine is a prodrug that produces its analgesic properties following metabolism to morphine entirely by CYP2D6.
- Ciclosporin (cyclosporine, Neoral): Blood levels of ciclosporin are increased if taken with grapefruit juice, orange juice, or apple juice. A plausible mechanism involves the combined inhibition of enteric CYP3A4 and MDR1, which potentially leads to serious adverse events (e.g., nephrotoxicity). Blood levels of tacrolimus (Prograf) can also be equally affected for the same reason as ciclosporin, as both drugs are calcineurin inhibitors.
- Dihydropyridines including felodipine (Plendil), nicardipine (Cardene), nifedipine, nisoldipine (Sular) and nitrendipine (Bayotensin)
- Erlotinib (Tarceva)
- Exemestane, aromasin, and by extension all estrogen-like compounds and aromatase inhibitors which mimic estrogen in function will be increased in effect, causing increased estrogen retention and increased drug retention.
- Etoposide interferes with grapefruit, orange, and apple juices.
- Fexofenadine (Allegra)
- Fluvoxamine (Luvox, Faverin, Fevarin and Dumyrox)
- Imatinib (Gleevec): Although no formal studies with imatinib and grapefruit juice have been conducted, the fact that grapefruit juice is a known inhibitor of the CYP 3A4 suggests that co-administration may lead to increased imatinib plasma concentrations. Likewise, although no formal studies were conducted, co-administration of imatinib with another specific type of citrus juice called Seville orange juice (SOJ) may lead to increased imatinib plasma concentrations via inhibition of the CYP3A isoenzymes. Seville orange juice is not usually consumed as a juice because of its sour taste, but it is found in marmalade and other jams. Seville orange juice has been reported to be a possible inhibitor of CYP3A enzymes without affecting MDR1 when taken concomitantly with ciclosporin.
- Lamotrigine
- Levothyroxine (Eltroxin, Levoxyl, Synthroid): the absorption of levothyroxine is affected by grapefruit juice.
- Losartan (Cozaar)
- Methadone: Inhibits the metabolism of methadone and raises serum levels.
- Omeprazole (Losec, Prilosec)
- Oxycodone: grapefruit juice enhances the exposure to oral oxycodone. And a randomized, controlled trial 12 healthy volunteers ingested 200 mL of either grapefruit juice or water three times daily for five days. On the fourth day 10 mg of oxycodone hydrochloride were administered orally. Analgesic and behavioral effects were reported for 12 hours and plasma samples were analyzed for oxycodone metabolites for 48 hours. Grapefruit juice and increased the mean area under the oxycodone concentration-time curve (AUC(0-∞)) by 1.7 fold, the peak plasma concentration by 1.5-fold and the half-life of oxycodone by 1.2-fold as compared to water. The metabolite-to-parent ratios of noroxycodone and noroxymorphone decreased by 44% and 45% respectively. Oxymorphone AUC(0-∞) increased by 1.6-fold but the metabolite-to-parent ratio remained unchanged.
- Quetiapine (Seroquel)
- Repaglinide (Prandin)
- Tamoxifen (Nolvadex): Tamoxifen is metabolized by CYP2D6 into its active metabolite 4-hydroxytamoxifen. Grapefruit juice may potentially reduce the effectiveness of tamoxifen.
- Trazodone (Desyrel): Little or no interaction with grapefruit juice.
- Verapamil (Calan SR, Covera HS, Isoptin SR, Verelan)
- Warfarin (coumadin)
- Zolpidem (Ambien): Little or no interaction with grapefruit juice.
For patients with vWD type 1 and vWD type 2A, desmopressin is available as different preparations, recommended for use in cases of minor trauma, or in preparation for dental or minor surgical procedures. Desmopressin stimulates the release of vWF from the Weibel-Palade bodies of endothelial cells, thereby increasing the levels of vWF (as well as coagulant factor VIII) three- to five-fold. Desmopressin is also available as a preparation for intranasal administration (Stimate) and as a preparation for intravenous administration. Recently, the FDA has approved the use of Baxalta’s Vonvendi. This is the first recombinant form of vWF. The effectiveness of this treatment is different than desmopressin because it only contains vWF, not vWF with the addition of FVIII. This treatment is only recommended for use by individuals who are 18 years of age or older.
Desmopressin is contraindicated in vWD type 2b because of the risk of aggravated thrombocytopenia and thrombotic complications. Desmopressin is probably not effective in vWD type 2M and is rarely effective in vWD type 2N. It is totally ineffective in vWD type 3.
For women with heavy menstrual bleeding, estrogen-containing oral contraceptive medications are effective in reducing the frequency and duration of the menstrual periods. Estrogen and progesterone compounds available for use in the correction of menorrhagia are ethinylestradiol and levonorgestrel (Levona, Nordette, Lutera, Trivora). Administration of ethinylestradiol diminishes the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, leading to stabilization of the endometrial surface of the uterus.
Desmopressin is a synthetic analog of the natural antidiuretic hormone vasopressin. Its overuse can lead to water retention and dilutional hyponatremia with consequent convulsion.
For patients with vWD scheduled for surgery and cases of vWD disease complicated by clinically significant hemorrhage, human-derived medium purity factor VIII concentrates, which also contain von Willebrand factors, are available for prophylaxis and treatment. Humate P, Alphanate, Wilate and Koate HP are commercially available for prophylaxis and treatment of vWD. Monoclonally purified factor VIII concentrates and recombinant factor VIII concentrates contain insignificant quantity of vWF, so are not clinically useful.
Development of alloantibodies occurs in 10-15% of patients receiving human-derived medium-purity factor VIII concentrates and the risk of allergic reactions including anaphylaxis must be considered when administering these preparations. Administration of the latter is also associated with increased risk of venous thromboembolic complications.
Blood transfusions are given as needed to correct anemia and hypotension secondary to hypovolemia. Infusion of platelet concentrates is recommended for correction of hemorrhage associated with platelet-type vWD.
The antifibrinolytic agents epsilon amino caproic acid and tranexamic acid are useful adjuncts in the management of vWD complicated by clinical hemorrhage. The use topical thrombin JMI and topical Tisseel VH are effective adjuncts for correction of hemorrhage from wounds.
Preventing exposure to the causative antigen leads to resolution of the condition. Tacrolimus or clobetasol propionate have also been used to treat plasma cell cheilitis.
Treatment of secondary cryofibrinoginemic disease may use the same methods used for treating the primary disease wherever necessary but focus on treating the associated infectious, malignant, premalignant, vasculitis, or autoimmune disorder with the methods prescribed for the associated disorder. Case report studies suggest that: corticosteroids and immunosuppressive drug regimens, antimicrobial therapy, and anti-neoplastic regimens can be effective treatments for controlling the cryfibrinoginemic disease in cases associated respectively with autoimmune, infectious, and premalignant/malignant disorders.
Apple juice, especially commercially produced products, interferes with the action of OATPs. This interference can decrease the absorption of a variety of commonly used medications, including beta blockers like atenolol, antibiotics like ciprofloxacin, and antihistamines like montelukast.
Apple juice has been implicated in interfering with etoposide, a chemotherapy drug, and cyclosporine, taken by transplant patients to prevent rejection of their new organs.
Treatment depends on the type of amyloidosis that is present. Treatment with high dose melphalan, a chemotherapy agent, followed by stem cell transplantation has showed promise in early studies and is recommended for stage I and II AL amyloidosis. However, only 20–25% of people are eligible for stem cell transplant. Chemotherapy and steroids, with melphalan plus dexamethasone, is mainstay treatment in AL people not eligible for transplant.
In AA, symptoms may improve if the underlying condition is treated; eprodisate has been shown to slow renal impairment by inhibiting polymerization of amyloid fibrils.
In ATTR, liver transplant is a curative therapy because mutated transthyretin which forms amyloids is produced in the liver.
People affected by amyloidosis are supported by multiple organizations, including the Amyloidosis Foundation, Amyloidosis Support Groups Inc., and Amyloidosis Australia, Inc.
Only limited treatment options exist for patients with clinical cancer cachexia. Current strategy is to improve appetite by using appetite stimulants to ensure adequate intake of nutrients. Pharmacological interventions with appetite stimulants, nutrient supplementation, 5-HT antagonists and Cox-2 inhibitor have been used to treat cancer cachexia, but with limited effect.
Studies using a more calorie-dense (1.5 kcals/ml) and higher protein supplementation have suggested at least weight stabilization can be achieved, although improvements in lean body mass have not been observed in these studies.
Therapeutic strategies have been based on either blocking cytokines synthesis or their action. Thalidomide has been demonstrated to suppress TNF-alpha production in monocytes "in vitro" and to normalize elevated TNF-alpha levels "in vivo". A randomized, placebo-controlled trial in patients with cancer cachexia showed the drug was well tolerated and effective at attenuating loss of weight and lean body mass (LBM) in patients with advanced pancreatic cancer. An improvement in the LBM and improved quality of life were also observed in a randomized, double-blind trial using a protein and energy-dense, omega-3 fatty acids-enriched oral supplement, provided its consumption was equal or superior to 2.2 g of eicosapentaenoic acid per day. It is also through decreasing TNF-alpha production. However, data arising from a large, multicenter, double-blind, placebo-controlled trial indicate EPA administration alone is not successful in the treatment of weight loss in patients with advanced gastrointestinal or lung cancer.
Peripheral muscle proteolysis, as it occurs in cancer cachexia, serves to mobilize amino acids required for the synthesis of liver and tumor protein. Therefore, the administration of exogenous amino acids may theoretically serve as a protein-sparing metabolic fuel by providing substrates for both muscle metabolism and gluconeogenesis. Studies have demonstrated dietary supplementation with a specific combination of high protein, leucine and fish oil improves muscle function and daily activity and the immune response in cachectic tumor-bearing mice. In addition, β-hydroxy-β-methyl butirate derived from leucine catabolism used as a supplement in tumor-bearing rats prevents cachexia by modifying NF-κB expression.
A phase-2 study involving the administration of antioxidants, pharmaconutritional support, progestin (megestrol acetate and medroxyprogesterone acetate), and anticyclooxygenase-2 drugs, showed efficacy and safety in the treatment of patients with advanced cancer of different sites suffering cachexia. These data reinforce the use of the multitargeted therapies (nutritional supplementation, appetite stimulants, and physical activity regimen) in the treatment of cancer cachexia.
New studies indicate NSAIDS, like Sulindac, were found to significantly decrease cachexia.
Also studies have shown branched-chain amino acids can return the metabolism of a cachectic patient from catabolic-losing weight- to anabolic- increasing muscle, in over 55% of patients. Branched-chain amino acids consist primarily of leucine and valine. In a research paper published by the Indian J of Palliat Care, the effects the findings concluded that bcaa's interfere with brain serotonergic activity and inhibit the overexpression of critical muscular proteolytic pathways. The potential role of branched-chain amino acids as antianorexia and anticachexia agents was proposed many years ago, but experimental studies and clinical trials have since tested their ability to stimulate food intake and counteract muscle wasting in anorectic, weight-losing patients. In experimental models of cancer cachexia, BCAAs were able to induce a significant suppression in the loss of body weight, producing a significant increase in skeletal muscle wet weight[30] as well as in muscle performance and total daily activity.
The conditionally essential amino acid glutamine has been used as a component of oral supplementation to reverse cachexia in patients with advanced cancer or HIV/AIDS.
Radiotherapy is the main choice of treatment for both SPB and extramedullary plasmacytoma, and local control rates of >80% can be achieved. This form of treatment can be used with curative intent because plasmacytoma is a radiosensitive tumor. Surgery is an option for extramedullary plasmacytoma, but for cosmetic reasons it is generally used when the lesion is not present within the head and neck region.
The first suspicion of SPCD in a patient with a non-specific presentation is an extremely low plasma carnitine level. When combined with an increased concentration of carnitine in urine, the suspicion of SPCD can often be confirmed by either molecular testing or functional studies assessing the uptake of carnitine in cultured fibroblasts.
Identification of patients presymptomatically via newborn screening has allowed early intervention and treatment. Treatment for SPCD involves high dose carnitine supplementation, which must be continued for life. Individuals who are identified and treated at birth have very good outcomes, including the prevention of cardiomyopathy. Mothers who are identified after a positive newborn screen but are otherwise asymptomatic are typically offered carnitine supplementation as well. The long-term outcomes for asymptomatic adults with SPCD is not known, but the discovery of mothers with undiagnosed cardiomyopathy and SPCD has raised the possibility that identification and treatment may prevent adult onset manifestations.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
Glucocorticoid deficiency 1 (FGD or GCCD) is an adrenocortical failure characterized by low levels of plasma cortisol produced by the adrenal gland despite high levels of plasma ACTH. This is an inherited disorder with several different causes which define the type.
FGD type 1 (FGD1 or GCCD1) is caused by mutations in the ACTH receptor (melanocortin 2 receptor; MC2R). FGD type 2 is caused by mutations in the MC2R accessory protein (MRAP). These two types account for 45% of all cases of FGD.
Some cases of FGD type 3 are caused by mutations in the steroidogenic acute regulatory protein (StAR), with similarity to the nonclassic form of lipoid congenital adrenal hyperplasia. In this case, a general impairment in not just adrenal steroid production, but gonadal steroid production can affect sexual development and fertility.
The causes of other cases of FGD type 3 not due to StAR are currently unknown.
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.