Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
There is no known cure for cerebral palsy, however there is a large array of treatments proven effective at improving quality of life and relieving some of the symptoms associated with CP, especially SHCP. Some treatments are aimed at improving mobility, strengthening muscle and improving coordination. Although CP is due to permanent damage and is not progressive in nature, without treatment the symptoms can become worse, intensifying in pain and severity, and create complications that were not initially present. Some treatments are preventative measures to help prevent further complications, such as complete paralysis of the arm due to non-use and subsequent worsening hypertonia and joint contracture. Others forms of treatment are corrective in nature. Many treatments target symptoms that are indirectly related to or caused by the SHCP. Many of these treatments are common for other forms of CP as well. Treatment is individualized based on each case and the specific needs of the patient. Treatments are often combined with other forms of treatment and a long term treatment plan is created and continuously evaluated. Treatment can include the following:
- "Physical therapy" – Physical therapy is the most common form of treatment (source needed). It may include sensory stimulation, stretching, strengthening and positioning. Constraint-induced movement therapy is a newer form of physical therapy for SHCP that involves casting or splinting the unaffected arm to promote use of the affected arm (Taub). The theory behind constraint-induced movement therapy is that new neural pathways are created. Alternative forms of physical therapy include yoga and dance. Physical therapy may also include the use of braces while not actively involved with the therapist.
- "Occupational therapy" – Occupational therapy evaluates and treats patients through selected activities in order to enable people to function as effectively and independently as possible in daily life. Occupational therapy is geared toward the individual to achieve optimal results and performance while learning to cope with their disability.
- "Speech therapy" – Due to difficulties in speech, speech therapy is often necessary. Aside from helping with understanding language and increasing communication skills, speech therapists can also assist children that have difficulty eating and drinking.
- "Behavioral therapy" — Psychotherapy and counseling are heavily used in treatment of individuals with SHPD to help them cope emotionally with their needs and frustrations. Counseling through social work can be very beneficial for social issues and adjustments to society. Psychotherapy becomes a more important aspect of therapy when more serious issues such as depression become problematic. Play therapy is a common treatment for all young children with or without disabilities, but can be very useful helping children with SHCP. This therapy again is individualized geared to improve emotional and social development; reduce aggression; improve cooperation with others; assist a child in processing a traumatic event or prepare for an upcoming event such as surgery.
- "Surgery" – Although surgery may become necessary in some cases, physical therapy and the consistent use of braces can help mitigate the need for surgery. Surgical procedures are painful with long and difficult recoveries and do not cure the condition. Most common, is surgery that effectively lengthens the muscle. This type of surgery is usually performed on the legs, but can be performed on the arms as well. Surgeries also may be necessary to realign joints. Other, less popular surgical techniques try to reduce spasticity by severing selected overactive nerves that control muscles. This procedure, known as selective dorsal root rhizotomy, is still somewhat controversial, and is generally used only on the lower extremities of severe cases. Other experimental surgical techniques are also being investigated. The benefits of surgery can also be negated or reversed if the patient does not participate in physical therapy and braces (or casts) are not worn regularly.
- "Medicinal" – Medication targeting symptoms associated with spasticity is also a relatively new treatment that is utilized, but is still in the early stages of development. Drugs such as baclofen, benzodiazepines (e.g., diazepam), tizanidin, and sometimes dantrolene have shown promise in the effort to diminish spasticity. Botulinum toxin ("Botox") type A may reduce spasticity a few months at a time and has frequently been considered a beneficial treatment for children with SHCP and other forms of CP. Botox has been shown to be especially beneficial to reducing spasticity in the gastrocnemius (calf) muscle. This therapy can improve range of motion, reduce deformity, improve response to occupational and physical therapy, and delay the need for surgery. Botox injections have also shown advantages for upper extremities. There is still some doubt for the effectiveness, and some side effects to the relaxed muscles have been a loss of strength for patients with some muscle control. Casting, in conjunction with Botox injections may be an additional option for better results. Research is constantly investing in new improvements and more experimental therapy and treatment.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
Although no cure exists, there are many different treatments which are currently being used to help control symptoms. These include short term treatment with some drugs (such as Botox) which relax the muscles, use of temperature changes to control muscle tremors, and a balanced approach of coordinated care and support involving physical therapists, orthopedic surgeons, and psychiatrists.
Because there is no cure for ataxic cerebral palsy, current methods of treatment are diverse, often consisting of multiple focuses designed to limit the severity of symptoms. Many children suffering from ataxic cerebral palsy are treated by teams consisting of individuals from numerous disciplines, including physical therapists, occupational therapist, orthopedic surgeons, and psychiatrists. Treatment by such teams involves multiple approaches. Providing a primary care medical home to support children suffering from common symptoms of nutritional deficiencies, pain, dental care, bowel and bladder continence, and orthopedic complications is an essential aspect of treatment. In addition, utilizing diagnostic techniques to identify the nature and severity of brain abnormalities has become increasingly beneficial for treatment in recent years.
Different medications have been used to temporarily treat ataxic cerebral palsy. Medications like primidone and benzodiazepine, while not recommended for long term use, can alleviate some of the tremor symptoms. Botox which relaxes tightened muscles has been effective in treating voice, hand and head tremors. A few recently published papers outlined a potential method for treating intention tremor which consisted of cooling the forearm by wrapping it in a cryomanchet using a circulating fluid. After the treatment most patients experienced reduced tremor for up to half an hour. This practical, however short-term treatment can facilitate performing normal daily activities like applying make up, eating, or signing documents. This potential treatment method is also significant in that it reduces one’s reliance on caregivers.
Riluzole has been found to modestly prolong survival by approximately two to three months. It may have a greater survival benefit for those with a bulbar onset. It is approved by the US Food and Drug Administration (FDA) and recommended by the National Institute for Health and Care Excellence (NICE) (England and Wales). Riluzole does not reverse damage already done to motor neurons but affects neurons by reducing their activity through blocking Na+ entrance into the neurons and thus blocking the release of the chemicals that causes the activity of the motor neurons. The reduction in activity prevents the ruining of the neuronal muscle and so the drug can act as a protective chemical. Studies have shown that the function of this drug is dependent on the amount taken at a given time. The higher the concentration, the better the drug will protect the neurons from ruin. The recommended dosage of Riluzole is 50 mg, twice a day for people with known ALS for more than 5 years.
There are a number of side effects caused by the drug including the feeling of weakness in muscles but this is normal due to the function of the drug. Studies have shown that people on the drug are not likely to stop responding to it or develop symptoms that might cause the activity of neurons to rise again, making Riluzole an effective drug for prolonging survival.
In 2015, edaravone was approved in Japan for treatment of ALS after studying how and whether it works on 137 people with ALS and has obtained orphan drug status in the EU and USA. On May 5, 2017, the FDA approved edaravone to extend the survival period of people with ALS. It costs about 145,000 USD per year in the US and 35,000 USD per year in Japan.
Other medications may be used to help reduce fatigue, ease muscle cramps, control spasticity, and reduce excess saliva and phlegm. Drugs also are available to help people with pain, such as non-steroidal and anti-inflammatory drugs and opioids, depression, sleep disturbances, dysphagia, and constipation. Baclofen and diazepam are often prescribed to control the spasticity caused by ALS, and trihexyphenidyl, amitriptyline or most commonly glycopyrrolate may be prescribed when people with ALS begin having trouble swallowing their saliva. There is no evidence that medications are effective at reducing muscle cramps experienced by people with ALS.
As a matter of everyday maintenance, muscle stretching, range of motion exercises, yoga, contact improvisation, modern dance, resistance training, and other physical activity regimens are often utilized by those with spastic CP to help prevent contractures and reduce the severity of symptoms.
Major clinical treatments for spastic diplegia are:
- Baclofen (and its derivatives), a gamma amino butyric acid (GABA) substitute in oral (pill-based) or intrathecal form. Baclofen is essentially chemically identical to the GABA that the damaged, over-firing nerves cannot absorb, except that it has an extra chemical 'marker' on it that makes the damaged nerves 'think' it is a different compound, and thus those nerves will absorb it. Baclofen is noted for being the sole medication available for GABA-deficiency-based spasticity which acts on the actual cause of the spasticity rather than simply reducing symptomatology as muscle relaxants and painkillers do. The intrathecal solution is a liquid injected into the spinal fluid for trial, and if successful in reducing spasticity, thereafter administered via an intrathecal pump, which has variously been proven potentially very dangerous on one or another level with long-term use (see article), including sudden and potentially lethal baclofen overdose, whereas the oral route, which comes in 10- or 20-milligram tablets and the dosage of which can be gently titrated either upward or downward, as well as safely ceased entirely, has not.
- Antispasmodic muscle relaxant chemicals such as tizanidine and botulinum toxin (Botox), injected directly into the spastic muscles; Botox wears off every three months.
- Phenol and similar chemical 'nerve deadeners', injected selectively into the over-firing nerves in the legs on the muscle end to reduce spasticity in their corresponding muscles by preventing the spasticity signals from reaching the legs; Phenol wears off every six months.
- Orthopedic surgery to release the spastic muscles from their hypertonic state, a usually temporary result because the spasticity source is the nerves, not the muscles; spasticity can fully reassert itself as little as one year post-surgery.
- Selective dorsal rhizotomy, a neurosurgery directly targeting and eliminating ("cutting" or "lesioning") the over-firing nerve rootlets and leaving the properly firing ones intact, thereby permanently eliminating the spasticity but compelling the person to spend months re-strengthening muscles that will have been severely weakened by the loss of the spasticity, due to the fact of those muscles not really having had actual strength to begin with.
Physical therapy and Occupational Therapy are staple treatments of ADCP. Physical therapy is initiated soon after diagnosis and typically focuses on trunk strength and maintaining posture. Physical therapy helps to improve mobility, range of motion, functional ability, and quality of life. Specific exercises and activities prescribed by a therapist help to prevent muscles from deteriorating or becoming locked in position and help to improve coordination. Occupational therapy interventions for children with CP can include feeding, dressing, bathing, toileting, grooming, pencil grasp and handwriting skills, play, and use of adaptive equipment.
Physiotherapy
To increase strength of muscle
To improve muscle functions
Electrical modalities =Electric stimulation.etc.
Occupational Therapy
Positioning, ROM, Sensory, Splinting
Since pseudobulbar palsy is a syndrome associated with other diseases, treating the underlying disease may eventually reduce the symptoms of pseudobulbar palsy.
Possible pharmacological interventions for pseudobulbar affect include the tricyclic antidepressants, serotonin reuptake inhibitors, and a novel approach utilizing dextromethorphan and quinidine sulfate. Nuedexta is an FDA approved medication for pseudobulbar affect. Dextromethorphan, an N-methyl-D-aspartate receptor antagonist, inhibits glutamatergic transmission in the regions of the brainstem and cerebellum, which are hypothesized to be involved in pseudobulbar symptoms, and acts as a sigma ligand, binding to the sigma-1 receptors that mediate the emotional motor expression.
Corticosteroids such as prednisone improve recovery at 6 months and are thus recommended. Early treatment (within 3 days after the onset) is necessary for benefit with a 14% greater probability of recovery.
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
There is no known cure for PSP and management is primarily supportive. PSP cases are often split into two subgroups, PSP-Richardson, the classic type, and PSP-Parkinsonism, where a short-term response to levodopa can be obtained. Dyskinesia is an occasional but rare complication of treatment. Amantadine is also sometimes helpful. After a few years the Parkinsonian variant tends to take on Richardson features. Other variants have been described. Botox can be used to treat neck dystonia and blephrospasm, but this can aggravate dysphagia.
Two studies have suggested that rivastigmine may help with cognitive aspects, but the authors of both studies have suggested a larger sampling be used. There is some evidence that the hypnotic zolpidem may improve motor function and eye movements, but only from small-scale studies.
Management of ALS attempts to relieve symptoms and extend life expectancy. This supportive care is best provided by multidisciplinary teams of healthcare professionals working with the person and their caregivers to keep them as mobile and comfortable as possible.
In terms of the management of spinal and bulbar muscular atrophy, no cure is known and treatment is supportive. Rehabilitation to slow muscle weakness can prove positive, though the prognosis indicates some individuals will require the use of a wheelchair in later stages of life.
Surgery may achieve correction of the spine, and early surgical intervention should be done in cases where prolonged survival is expected. Preferred nonsurgical treatment occurs due to the high rate of repeated dislocation of the hip.
Physiotherapy can be beneficial to some individuals with Bell’s palsy as it helps to maintain muscle tone of the affected facial muscles and stimulate the facial nerve. It is important that muscle re-education exercises and soft tissue techniques be implemented prior to recovery in order to help prevent permanent contractures of the paralyzed facial muscles. To reduce pain, heat can be applied to the affected side of the face. There is no high quality evidence to support the role of electrical stimulation for Bell's palsy.
Current forms of prevention are focused during pregnancy, while others are focused immediately after birth. Some methods that have been used include prolonging the pregnancy using interventions such as 17-alpha progesterone, limiting the number of gestations during pregnancy (for pregnancies induced by assistive reproductive technology), antenatal steroid for mothers likely to deliver prematurely, high caffeine for premature births with extremely low birth weights.
Patients with PSP usually seek or are referred to occupational therapy, speech-language pathology for motor speech changes typically a spastic-ataxic dysarthria, and physical therapy for balance and gait problems with reports of frequent falls. Evidence-based approaches to rehabilitation in PSP are lacking, and currently the majority of research on the subject consists of case reports involving only a small number of patients.
Case reports of rehabilitation programs for patients with PSP generally include limb-coordination activities, tilt-board balancing, gait training, strength training with progressive resistive exercises and isokinetic exercises and stretching of the neck muscles. While some case reports suggest that physiotherapy can offer improvements in balance and gait of patients with PSP, the results cannot be generalized across all patients with PSP as each case report only followed one or two patients. The observations made from these case studies can be useful, however, in helping to guide future research concerning the effectiveness of balance and gait training programs in the management of PSP.
Individuals with PSP are often referred to occupational therapists to help manage their condition and to help enhance their independence. This may include being taught to use mobility aids. Due to their tendency to fall backwards, the use of a walker, particularly one that can be weighted in the front, is recommended over a cane. The use of an appropriate mobility aid will help to decrease the individual’s risk of falls and make them safer to ambulate independently in the community.
Due to their balance problems and irregular movements individuals will need to spend time learning how to safely transfer in their homes as well as in the community. This may include rising from and sitting in chairs safely.
Due to the progressive nature of this disease, all individuals eventually lose their ability to walk and will need to progress to using a wheelchair. Severe dysphagia often follows, and at this point death is often a matter of months.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
Doublecortin positive cells, similar to stem cells, are extremely adaptable and, when extracted from a brain, cultured and then re-injected in a lesioned area of the same brain, they can help repair and rebuild it. The treatment using them would take some time to be available for general public use, as it has to clear regulations and trials.
There is currently no cure or standard procedure for treatment. A bone marrow transplant has been attempted on a child, but it made no improvement. Hydrocephalus may be seen in younger patients and can be relieved with surgery or by implanting a shunt to relieve pressure.
Although HSP is a progressive condition, the prognosis for individuals with HSP varies greatly. It primarily affects the legs although there can be some upperbody involvement in some individuals. Some cases are seriously disabling while others are less disabling and are compatible with a productive and full life. The majority of individuals with HSP have a normal life expectancy.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Because the exact cause of CBD is unknown, there exists no formal treatment for the disease. Instead, treatments focus on minimizing the appearance or effect of the symptoms resulting from CBD. The most easily treatable symptom of CBD is parkinsonism, and the most common form of treatment for this symptom is the application of dopaminergic drugs. However, in general only moderate improvement is seen and the relief from the symptom is not long-lasting. In addition, palliative therapies, including the implementation of wheelchairs, speech therapy, and feeding techniques, are often used to alleviate many of the symptoms that show no improvement with drug administration.