Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is not much evidence supporting the claim that radiotherapy is a beneficial and effective means of treatment. Typically, radiotherapy is used postoperatively in respect to whether or not a partial or complete excision of the tumor has been accomplished. The histopathological features of CNC, neuronal differentiation, low mitotic activity, absence of vascular endothelial proliferation, and tumor necrosis, suggest that the tumor may be resistant to ionizing radiation. However, when radiotherapy is used, whole brain or involved-field treatment is given. This method utilizes a standard fractionation schedule and a total tumor dose of 50-55 Gy. Gamma knife surgery is a form of radiotherapy, more specifically radiosurgery that uses beams of gamma rays to deliver a certain dosage of radiation to the tumor. Gamma knife surgery is incredibly effective at treating neurocytoma and maintaining tumor control after the procedure when a complete excision has been performed. Some studies have found that the success rate of tumor control is around 90% after the first five years and 80% after the first ten years. Gamma knife surgery is the most recorded form of radiotherapy performed to treat remnants of the CNC tumor after surgery.
Chemotherapy is typically limited to patients with recurrent central neurocytoma. The course of chemotherapy used for CNC is one of two platinum-based regimes. The two regimes are:
- Carboplatin + VP-16 + ifosfamide
- cisplatin + VP-16 + cyclophosphamide
Because chemotherapy is used in rare cases there is still information to be gathered as to the efficacy of chemotherapy to treat benign CNC. Therefore, recommendations must be viewed as limited and preliminary.
Most studies show no benefit from the addition of chemotherapy. However, a large clinical trial of 575 participants randomized to standard radiation versus radiation plus temozolomide chemotherapy showed that the group receiving temozolomide survived a median of 14.6 months as opposed to 12.1 months for the group receiving radiation alone. This treatment regime is now standard for most cases of glioblastoma where the person is not enrolled in a clinical trial. Temozolomide seems to work by sensitizing the tumor cells to radiation.
High doses of temozolomide in high-grade gliomas yield low toxicity, but the results are comparable to the standard doses.
Antiangiogenic therapy with medications such as bevacizumab control symptoms but do not affect overall survival.
Supportive treatment focuses on relieving symptoms and improving the patient’s
neurologic function. The primary supportive agents are anticonvulsants and
corticosteroids.
- Historically, around 90% of patients with glioblastoma underwent anticonvulsant treatment, although it has been estimated that only approximately 40% of patients required this treatment. Recently, it has been recommended that neurosurgeons not administer anticonvulsants prophylactically, and should wait until a seizure occurs before prescribing this medication. Those receiving phenytoin concurrent with radiation may have serious skin reactions such as erythema multiforme and Stevens–Johnson syndrome.
- Corticosteroids, usually dexamethasone given 4 to 8 mg every 4 to 6 h, can reduce peritumoral edema (through rearrangement of the blood–brain barrier), diminishing mass effect and lowering intracranial pressure, with a decrease in headache or drowsiness.
Because LCLC-RP is so rare, no clinical trials have ever been conducted that specifically address treatment of this lung cancer variant. Because LCLC-RP is considered a form of non-small cell lung carcinoma (NSCLC), most physicians adhere to published NSCLC treatment guidelines in rhabdoid carcinoma cases. When possible, radical surgical resection with curative intent is the primary treatment of choice in early stage NSCLC's, and can be administered with or without adjuvant, neoadjuvant, or palliative chemotherapy and/or radiotherapy, depending on the disease stage and performance status of the individual patient.
In numerous clinical trials conducted in NSCLC, several different platinum-based chemotherapy regimens have been shown to be more-or-less equally effective. LCLC's, as a subtype of NSCLC, have traditionally been included in many of these clinical trials, and have been treated like other NSCLC's. More recent trials, however, have shown that some newer agents may have particular effectiveness in prolonging survival of LCLC patients. Pemetrexed, in particular, has shown significant reduction in the hazard ratio for death when used in patients with LCLC. Taxane-based (paclitaxel, docetaxel) chemotherapy was shown to induce a complete and sustained response in a liver metastasis in a case of LCC-RP. A later-appearing metastasis within mediastinal lymph nodes in the same case also showed a durable response to a taxane alone.
There have also been reports of rhabdoid carcinomas expressing vascular endothelial growth factor (VEGF), suggesting that targeted molecular therapy with VEGF blocking monoclonal antibodies such as bevacizumab may be active in these variants. However, evidence suggests that caution must be used when treating a cavitated rhabdoid tumor, one that contains significant components of squamous cell differentiation, or large tumors with containing major blood vessels, due to the potential high risk of life-threatening pulmonary hemorrhage.
A recent study reported a case wherein 2 courses of adjuvant therapy with cisplatin and paclitaxel, followed by oral gefitinib, were used after complete resection. The patient had had no recurrence 34 months later.
As large-volume LCLC-RP may show significant central necrosis and cavitation, prudence dictates that oncologists use extreme caution if contemplating the therapeutic use of bevacizumab, other anti-VEGF compounds, or anti-angiogenesis agents in general, which have been associated with a greatly increased risk of severe hemorrhage and hemoptysis that may be quickly fatal in cavatated pulmonary squamous cell carcinomas. Similar elevated risks have also been noted in tumors located near, or containing, large blood vessels.,
General treatment regimens have not changed much in the past 30 years, in part due to the lack of randomized clinical trials. Surgery is the treatment of choice if the tumor is determined to be resectable. Curettage is a commonly used technique. The situation is complicated in a patient with a pathological fracture. It may be best to immobilize the affected limb and wait for the fracture to heal before performing surgery.
Patients with tumors that are not amenable to surgery are treated with radiation therapy. However caution is employed since a majority of recurrent tumors with transformations to the malignant sarcoma phenotype have been in patients receiving radiotherapy for their primary benign lesion. Pharmacotherapy for GCTOB, includes bisphosphonates such as Zoledronate, which are thought to induce apoptosis in the MNGC fraction, preventing tumor-induced osteolysis. Indeed, "in vitro" studies have shown zolidronate to be effective in killing osteoclast-like cells. More recently, humanized monoclonal antibodies such as Denosumab targeting the RANK ligand have been employed in treatment of GCTOB in a phase II study. This is based on the notion that increased expression of RANK-ligands by stromal cells plays a role in tumor pathogenesis.
The primary method for treatment is surgical, not medical. Radiation and chemotherapy are not needed for benign lesions and are not effective for malignant lesions.
Benign granular cell tumors have a recurrence rate of 2% to 8% when resection margins are deemed clear of tumor infiltration. When the resection margins of a benign granular cell tumor are positive for tumor infiltration the recurrence rate is increased to 20%. Malignant lesions are aggressive and difficult to eradicate with surgery and have a recurrence rate of 32%.
Treatment options include surgery, radiotherapy, radiosurgery, and chemotherapy.
The infiltrating growth of microscopic tentacles in fibrillary astrocytomas makes complete surgical removal difficult or impossible without injuring brain tissue needed for normal neurological function. However, surgery can still reduce or control tumor size. Possible side effects of surgical intervention include brain swelling, which can be treated with steroids, and epileptic seizures. Complete surgical excision of low grade tumors is associated with a good prognosis. However, the tumor may recur if the resection is incomplete, in which case further surgery or the use of other therapies may be required.
Standard radiotherapy for fibrillary astrocytoma requires from ten to thirty sessions, depending on the sub-type of the tumor, and may sometimes be performed after surgical resection to improve outcomes and survival rates. Side effects include the possibility of local inflammation, leading to headaches, which can be treated with oral medication. Radiosurgery uses computer modelling to focus minimal radiation doses at the exact location of the tumor, while minimizing the dose to the surrounding healthy brain tissue. Radiosurgery may be a complementary treatment after regular surgery, or it may represent the primary treatment technique.
Although chemotherapy for fibrillary astrocytoma improve overall survival, it is effective only in about 20% of cases. Researchers are currently investigating a number of promising new treatment techniques including gene therapy, immunotherapy, and novel chemotherapies.
The goal of radiation therapy is to kill tumor cells while leaving normal brain tissue unharmed. In standard external beam radiation therapy, multiple treatments of standard-dose "fractions" of radiation are applied to the brain. This process is repeated for a total of 10 to 30 treatments, depending on the type of tumor. This additional treatment provides some patients with improved outcomes and longer survival rates.
Radiosurgery is a treatment method that uses computerized calculations to focus radiation at the site of the tumor while minimizing the radiation dose to the surrounding brain. Radiosurgery may be an adjunct to other treatments, or it may represent the primary treatment technique for some tumors. Forms used include stereotactic radiosurgery, such as Gamma knife, Cyberknife or Novalis Tx radiosurgery.
Radiotherapy may be used following, or in some cases in place of, resection of the tumor. Forms of radiotherapy used for brain cancer include external beam radiation therapy, the most common, and brachytherapy and proton therapy, the last especially used for children.
Radiotherapy is the most common treatment for secondary brain tumors. The amount of radiotherapy depends on the size of the area of the brain affected by cancer. Conventional external beam "whole-brain radiotherapy treatment" (WBRT) or "whole-brain irradiation" may be suggested if there is a risk that other secondary tumors will develop in the future. Stereotactic radiotherapy is usually recommended in cases involving fewer than three small secondary brain tumors.
People who receive stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) for the treatment of metastatic brain tumors have more than twice the risk of developing learning and memory problems than those treated with SRS alone.
Patients undergoing chemotherapy are administered drugs designed to kill tumor cells. Although chemotherapy may improve overall survival in patients with the most malignant primary brain tumors, it does so in only about 20 percent of patients. Chemotherapy is often used in young children instead of radiation, as radiation may have negative effects on the developing brain. The decision to prescribe this treatment is based on a patient's overall health, type of tumor, and extent of the cancer. The toxicity and many side effects of the drugs, and the uncertain outcome of chemotherapy in brain tumors puts this treatment further down the line of treatment options with surgery and radiation therapy preferred.
UCLA Neuro-Oncology publishes real-time survival data for patients with a diagnosis of glioblastoma multiforme. They are the only institution in the United States that displays how brain tumor patients are performing on current therapies. They also show a listing of chemotherapy agents used to treat high-grade glioma tumors.
Treatment of metastatic breast cancer is currently an active area of research. Several medications are in development or in phase I/II trials. Typically new medications and treatments are first tested in metastatic cancer before trials in primary cancer are attempted.
Another area of research is finding combination treatments which provide higher efficacy with reduced toxicity and side effects.
Experimental medications:
- sorafenib a combined Tyrosine protein kinases inhibitor.
Thyroidectomy and neck dissection show good results in early stages of SCTC. However, due to highly aggressive phenotype, surgical treatment is not always possible. The SCTC is a radioiodine-refractory tumor. Radiotherapy might be effective in certain cases, resulting in relatively better survival rate and quality of life. Vincristine, Adriamycin, and bleomycin are used for adjuvant chemotherapy, but their effects are not good enough according to published series.
Some patients with metastatic breast cancer opt to try alternative therapies such as vitamin therapy, homeopathic treatments, a macrobiotic diet, chiropractic or acupuncture. There is no evidence that any of these therapies are effective; they may be harmful, either because patients pass up effective conventional therapies such as chemotherapy or anti-estrogen therapy in favor of alternative treatments, or because the treatments themselves are harmful (as in the case of apricot-pit therapy—which exposes the patient to cyanide—or in chiropractic, which can be dangerous to patients with cancer metastatic to the spinal bones or spinal cord. A macrobiotic diet is neither effective nor safe as it could hypothetically induce weight loss due to severe dietary restriction. There is limited evidence that acupuncture might relive pain in cancer patients, but data so far is insufficient to recommend its use outside of clinical trials.
There is free peer support and an online platform to interact with others going through various therapies, including Abraxane.
The specific treatment will depend on the tumor's type, location, size, and whether the cancer has spread to other organs. Surgical removal of the tumor remains the standard treatment of choice, but additional forms of therapy such as radiation therapy, chemotherapy, or immunotherapy exist.
When detected early, skin cancer in cats and dogs can often be treated successfully. In many cases, a biopsy can remove the whole tumor, as long as the healthy tissues removed from just outside the tumor area do not contain any cancer cells.
a) Surgical resection is mainstay of treatment, whenever possible. If tumor is completely removed, post-operative radiation therapy is typically not needed since acinic cell is considered a low-grade histology. Post-operative radiation therapy for acinic cell carcinoma is used if: 1) margins are positive, 2) incomplete resection, 3) tumor invades beyond gland, 4) positive lymph nodes.
b) Neutron beam radiation
c) Conventional radiation
d) Chemotherapy
For treatment purposes, MCACL has been traditionally considered a non-small cell lung carcinoma (NSCLC). Complete radical surgical resection is the treatment of choice.
There is virtually no data regarding new molecular targets or targeted therapy in the literature to date. Iwasaki and co-workers failed to find mutations of the epidermal growth factor receptor (EGFR) or the cellular Kirsten rat sarcoma virus oncogene "K-ras" in one reported case.
Primary treatment for this cancer, regardless of body site, is surgical removal with clean margins. This surgery can prove challenging in the head and neck region due to this tumour's tendency to spread along nerve tracts. Adjuvant or palliative radiotherapy is commonly given following surgery. For advanced major and minor salivary gland tumors that are inoperable, recurrent, or exhibit gross residual disease after surgery, fast neutron therapy is widely regarded as the most effective form of treatment.
Chemotherapy is used for metastatic disease. Chemotherapy is considered on a case by case basis, as there is limited trial data on the positive effects of chemotherapy. Clinical studies are ongoing, however.
Induction chemotherapy is the treatment adapted for shrinking the tonsil tumor. It is given prior to other treatments, hence, the term induction. After the therapy is completed, the patient is asked to rest and is evaluated over a period of time. Then the patient is given chemo-radiation therapy (a combination of chemotherapy and radiation) to completely destroy the tumor cells.
Chemotherapy regimens for pediatric ependymomas have produced only modest benefit and degree of resection remains the most conspicuous factor in recurrence and survival.
The association of "TERT" expression with poor outcome in pediatric ependymomas has driven some researchers to suggest that telomerase inhibition may be an effective adjuvant therapy for pediatric ependymomas. Further, data from "in vitro" experiments using primary tumor isolate cells suggest that inhibition of telomerase activity may inhibit cell proliferation and increase sensitivity of cells to DNA damaging agents, consistent with the observation of high telomerase activity in primary tumors. Additionally, because apurinic/apyrimidinic endonuclease ("APE1") has been found to confer radiation resistance in pediatric ependymomas, it has been suggested that inhibitors of Ap endo activity might also restore radiation sensitivity.
Within the infratentorial group of pediatric ependymomas, radiotherapy was found to significantly increase 5-year survival. However, a retrospective review of sterotactic radiosurgery showed it provided only a modest benefit to patients who had previously undergone resection and radiation. Though other supratentorial tumors tend to have a better prognosis, supratentorial anaplastic ependymomas are the most aggressive ependymoma and neither total excision nor postoperative irradiation was found to be effective in preventing early recurrence.
Following resection of infratentorial ependymomas, residual tumor is more likely in lateral versus medial tumors, classified radiologically pre-operatively. Specific techniques, such as cerebellomedullary fissure dissection have been proposed to aid in complete resection while avoiding iatrogenic effects in these cases. Surveillance neuroimaging for recurrence provides additional survival to patients over observation alone.
Treatment and survival is determined, to a great extent, by whether or not a cancer remains localized or spreads to other locations in the body. If the cancer metastasizes to other tissues or organs it usually dramatically increases a patient's likelihood of death. Some cancers—such as some forms of leukemia, a cancer of the blood, or malignancies in the brain—can kill without spreading at all.
Once a cancer has metastasized it may still be treated with radiosurgery, chemotherapy, radiation therapy, biological therapy, hormone therapy, surgery, or a combination of these interventions ("multimodal therapy"). The choice of treatment depends on a large number of factors, including the type of primary cancer, the size and location of the metastases, the patient's age and general health, and the types of treatments used previously. In patients diagnosed with CUP it is often still possible to treat the disease even when the primary tumor cannot be located.
Current treatments are rarely able to cure metastatic cancer though some tumors, such as testicular cancer and thyroid cancer, are usually curable.
Palliative care, care aimed at improving the quality of life of people with major illness, has been recommended as part of management programs for metastasis.
Treating PPB depends on the size and location of the tumor, whether the cancer has spread, and the child's overall health. Surgery is the main treatment for PPB. The main goal of surgery is to remove the tumor. If the tumor is too large to be completely removed, or if it's not possible to completely remove the tumor, surgery may be performed after chemotherapy. Because PPB can return after treatment, regular screening for possible recurrence should continue for 48 to 60 months, after diagnosis.
Early radio-sensitive tumors are treated by radiotherapy along with irradiation of cervical nodes. The radiation uses high-energy X-rays, electron beams, or radioactive isotopes to destroy cancer cells.
Since Krukenberg tumors are secondary (metastatic), management might logically be driven by identifying and treating the primary cancer. The optimal treatment of Krukenberg tumors is unclear. The role of surgical resection has not been adequately addressed but if metastasis is limited to the ovaries, surgery may improve survival. The role of chemotherapy and/or radiotherapy is uncertain but may sometimes be beneficial.
hTERT and yH2AX are crucial markers for prognosis and response to therapy. High hTERT and low yH2AX expression is associated with poor response to therapy. Patients with both high or low expression of these markers make up the moderate response groups.
CUP is a term that refers to many different cancers. For that reason, treatment depends on where the cancer is found, the microscopic appearance of the cancer cells, the biochemical characterization of the cells, and the patient’s age and overall physical condition. In women, who present with axillary lymph node involvement, treatment is offered along the lines of breast cancer. In patients, who have neck lymph node involvement, then treatment is offered along the lines of head and neck cancer. If inguinal lymph nodes are involved, then treatment may be offered along the lines of genitourinary cancer.
If the site of origin is unknown or undiscovered, then the histology of the tumor (e.g., adenocarcinoma, squamous cell or mesenchymal) can usually be identified, and a probable origin may be assumed. When this is possible, then treatment is based on the type of cell and probable origin. Based on histological subtype, combination chemotherapy may be selected. A combination of carboplatin and paclitaxel is often used. Advances techniques such as FISH and tissue of origin testing may also be employed. Germ cell tumors often carry abnormality of chromosome 12, which if identified, directs treatment for metastatic germ cell tumors.
No method is standard for all forms of CUP, but chemotherapy, radiation therapy, hormone therapy, and surgery may be used alone or in combination to treat patients who have CUP. Even when the cancer is unlikely to be cured, treatment may help the patient live longer or improve the patient’s quality of life. Radiation may be used to shrink a variety of local tumors. However, the potential side effects of the treatment must be considered along with the potential benefits.
In CUP to secondary neck nodes, surgery followed by external beam radiotherapy is sufficient.
For CUP with an unfavorable prognosis, treatment with taxanes may provide a slight survival benefit. The uncertainties and ambiguity inherent in a CUP diagnosis may cause additional stress for the patient.