Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Five bisphosphonates are currently available. In general, the most commonly prescribed are risedronic acid, alendronic acid, and pamidronic acid. Etidronic acid and other bisphosphonates may be appropriate therapies for selected patients but are less commonly used. None of these drugs should be used by people with severe kidney disease.
- Etidronate disodium The approved regimen is once daily for six months; a higher dose is more commonly used. No food, beverage, or medications should be consumed for two hours before and after taking. The course should not exceed six months, but repeat courses can be given after rest periods, preferably of three to six months duration.
- Pamidronate disodium in intravenous form: the approved regimen uses an infusion over four hours on each of three consecutive days, but a more commonly used regimen is over two to four hours for two or more consecutive or nonconsecutive days.
- Alendronate sodium is given as tablets once daily for six months; patients should wait at least 30 minutes after taking before eating any food, drinking anything other than tap water, taking any medication, or lying down (patient may sit).
- Tiludronate disodium are taken once daily for three months; they may be taken any time of day, as long as there is a period of two hours before and after resuming food, beverages, and medications.
- Risedronate sodium tablet taken once daily for 2 months is the prescribed regimen; patients should wait at least 30 minutes after taking before eating any food, drinking anything other than tap water, taking any medication, or lying down (patient may sit).
- Zoledronic acid is given as an intravenous infusion; a single dose is effective for two years. This is recommended for most people at high risk with active disease.
Calcitonin, also called calcitonin-salmon, is a synthetic copy of a polypeptide hormone secreted by the ultimobranchial gland of salmon. Miacalcin is administered by injection, three times per week or daily, for 6–18 months. Repeat courses can be given after brief rest periods. Miacalcin may be appropriate for certain patients, but is seldom used. Calcitonin is also linked to increased chance of cancer. Due to the increased risk of cancer, the European Medicines Agency (EMA) recommended that calcitonin be used only on a short-term basis for 3 conditions for which it had previously been approved in the European Union: Paget's disease, acute bone loss resulting from sudden immobilization, and hypercalcemia caused by cancer.
The EMA said it based its recommendations on a review of the benefits and risks of calcitonin-containing medicines. Conducted by the agency's Committee for Medicinal Products for Human Use (CHMP), the review encompassed available data from the companies that market these drugs, postmarketing safety data, randomized controlled studies, 2 studies of unlicensed oral calcitonin drugs, and experimental cancer studies, among other sources.
CHMP found that "a higher proportion of patients treated with calcitonin for long periods of time develop cancer of various types, compared with patients taking placebo." The increase in cancer rates ranged from 0.7% for oral formulations to 2.4% for the nasal formulation. CHMP concluded that the benefits of calcitonin for osteoporosis did not exceed the risks. The nasal spray's only indication is for osteoporosis, thus justifying the drug's removal from the market.
As a solution for injection or infusion, calcitonin should be administered for no more than 4 weeks to prevent acute bone loss resulting from sudden immobilization, and normally for no more than 3 months to treat Paget's disease, the EMA said. The agency did not specify a time frame for the short-term use of calcitonin for treating hypercalcemia caused by cancer.
Treatment of Gorham's disease is for the most part palliative and limited to symptom management.
Sometimes the bone destruction spontaneously ceases and no treatment is required. But when the disease is progressive, aggressive intervention may be necessary. Duffy and colleagues reported that around 17% of patients with Gorham's disease in the ribs, shoulder, or upper spine experience extension of the disease into the chest, leading to chylothorax with its serious consequences, and that the mortality rate in this group can reach as high as 64% without surgical intervention.
A search of the medical literature reveals multiple case reports of interventions with varying rates of success as follows:
Cardiothoracic (heart & lung):
- Pleurodesis
- Ligation of thoracic duct
- Pleurperitoneal shunt
- Radiation therapy
- Pleurectomy
- Surgical resection
- Thalidomide
- Interferon alpha-2b
- TPN (total parenteral nutrition)
- Thoracentesis
- Diet rich in medium-chain triglycerides and protein
- Chemotherapy
- Sclerotherapy
- Transplantation
Skeletal:
- Interferon alpha-2b
- Bisphosphonate (e.g. pamidronate)
- Surgical resection
- Radiation therapy
- Sclerotherapy
- Percutaneous bone cement
- Bone graft
- Prosthesis
- Surgical stabilization
- Amputation
To date, there are no known interventions that are consistently effective for Gorham's and all reported interventions are considered experimental treatments, though many are routine for other conditions. Some patients may require a combination of these approaches. Unfortunately, some patients will not respond to any intervention.
Although a 2011 research article stated that disagreements between hand surgeons and rheumatologists remain regarding the indications, timing and effectiveness of rheumatoid hand surgery, arthritis mutilans may be successfully treated by iliac-bone graft and arthrodesis of the interphalangeal joints and the metacarpophalangeal joint in each finger.
Once the process is recognized, it should be treated via the VIPs — vascular management, infection management and prevention, and pressure relief. Aggressively pursuing these three strategies will progress the healing trajectory of the wound. Pressure relief (off-loading) and immobilization with total contact casting (TCC) are critical to helping ward off further joint destruction.
TCC involves encasing the patient’s complete foot, including toes, and the lower leg in a specialist cast that redistributes weight and pressure in the lower leg and foot during everyday movements. This redistributes pressure from the foot into the leg, which is more able to bear weight, to protect the wound, letting it regenerate tissue and heal. TCC also keeps the ankle from rotating during walking, which prevents shearing and twisting forces that can further damage the wound. TCC aids maintenance of quality of life by helping patients to remain mobile.
There are two scenarios in which the use of TCC is appropriate for managing neuropathic arthropathy (Charcot foot), according to the American Orthopaedic Foot and Ankle Society. First, during the initial treatment, when the breakdown is occurring, and the foot is exhibiting edema and erythema; the patient should not bear weight on the foot, and TCC can be used to control and support the foot. Second, when the foot has become deformed and ulceration has occurred; TCC can be used to stabilize and support the foot, and to help move the wound toward healing.
Walking braces controlled by pneumatics are also used. Surgical correction of a joint is rarely successful in the long-term in these patients. However, off-loading alone does not translate to optimal outcomes without appropriate management of vascular disease and/or infection. Duration and aggressiveness of offloading (non-weight-bearing vs. weight-bearing, non-removable vs. removable device) should be guided by clinical assessment of healing of neuropathic arthropathy based on edema, erythema, and skin temperature changes. It can take 6–9 months for the edema and erythema of the affected joint to recede.
The bone edema in arthitis mutilans can be treated with TNF inhibitors in the short term: a 2007 study found that the bone edema associated with psoriatic arthritis (of which arthitis mutilans is a subtype) responded to TNF inhibitors with "dramatic" improvement, but the study was not determinative of whether TNF inhibitors would prevent new bone formation, bone fusion, or osteolysis (bone resorption).
Treatment is usually surgical removal of the gland(s) containing adenomas, but medication may also be required.
The surgical removal of one or more of the parathyroid glands is known as a parathyroidectomy; this operation was first performed in 1925. The symptoms of the disease, listed above, are indications for surgery. Surgery reduces all cause mortality as well as resolving symptoms. However, cardiovascular mortality is not significantly reduced.
The 2002 NIH Workshop on Asymptomatic Primary Hyperparathyroidism developed criteria for surgical intervention . The criteria were revised at the Third International Workshop on the Management of Asymptomatic Primary Hyperparathyroidism . These criteria were chosen on the basis of clinical experience and observational and clinical trial data as to which patients are more likely to have end-organ effects of primary hyperparathyroidism (nephrolithiasis, skeletal involvement), disease progression if surgery is deferred, and the most benefit from surgery. The panel emphasized the need for parathyroidectomy to be performed by surgeons who are highly experienced and skilled in the operation. The Third International Workshop guidelines concluded that surgery is indicated in asymptomatic patients who meet any one of the following conditions:
- Serum calcium concentration of 1.0 mg/dL (0.25 mmol/L) or more above the upper limit of normal
- Creatinine clearance that is reduced to <60 mL/min
- Bone density at the hip, lumbar spine, or distal radius that is more than 2.5 standard deviations below peak bone mass (T score <-2.5) and/or previous fragility fracture
- Age less than 50 years
Operative intervention can be delayed in patients over 50 years of age who are asymptomatic or minimally symptomatic and who have serum calcium concentrations <1.0 mg/dL (0.2 mmol/L) above the upper limit of normal, and in patients who are medically unfit for surgery
More recently, three randomized controlled trials have studied the role of surgery in patients with asymptomatic hyperparathyroidism. The largest study reported that surgery resulted in an increase in bone mass, but no improvement in quality of life after one to two years among patients in the following groups:
- Untreated, asymptomatic primary hyperparathyroidism
- Serum calcium between 2.60–2.85 mmol/liter (10.4–11.4 mg/dl)
- Age between 50 and 80 yr
- No medications interfering with Ca metabolism
- No hyperparathyroid bone disease
- No previous operation in the neck
- Creatinine level < 130 µmol/liter (<1.47 mg/dl)
Two other trials reported improvements in bone density and some improvement in quality of life with surgery.
While bone resorption is commonly associated with many diseases or joint problems, the term "osteolysis" generally refers to a problem common to artificial joint replacements such as total hip replacements, total knee replacements and total shoulder replacements. Osteolysis can also be associated with the radiographic changes seen in those with bisphosphonate-related osteonecrosis of the jaw.
There are several biological mechanisms which may lead to osteolysis. In total hip replacement, the generally accepted explanation for osteolysis involves wear particles (worn off the contact surface of the artificial ball and socket joint). As the body attempts to clean up these wear particles (typically consisting of plastic or metal), it triggers an autoimmune reaction which causes resorption of living bone tissue. Osteolysis has been reported to occur as early as 12 months after implantation and is usually progressive. This may require a revision surgery (replacement of the prosthesis).
Although osteolysis itself is clinically asymptomatic, it can lead to implant loosening or bone breakage, which in turn causes serious medical problems.
Outcomes vary depending on the location of the disease, the degree of damage to the joint, and whether surgical repair was necessary. Average healing times vary from 55–97 days depending on location. Up to 1–2 years may be required for complete healing.
Distal clavicular osteolysis (DCO) is often associated with problems weightlifters have with their acromioclavicular joints due to high stresses put on the clavicle as it meets with the acromion. This condition is often referred to as "weight lifter's shoulder". Medical ultrasonography readily depicts resorption of the distal clavicle as irregular cortical erosions, whereas the acromion remains intact. Associated findings may include distended joint capsule, soft-tissue swelling, and joint instability.
A common surgery to treat recalcitrant DCO is re-sectioning of the distal clavicle, removing a few millimetres of bone from the very end of the bone.
General treatment regimens have not changed much in the past 30 years, in part due to the lack of randomized clinical trials. Surgery is the treatment of choice if the tumor is determined to be resectable. Curettage is a commonly used technique. The situation is complicated in a patient with a pathological fracture. It may be best to immobilize the affected limb and wait for the fracture to heal before performing surgery.
Patients with tumors that are not amenable to surgery are treated with radiation therapy. However caution is employed since a majority of recurrent tumors with transformations to the malignant sarcoma phenotype have been in patients receiving radiotherapy for their primary benign lesion. Pharmacotherapy for GCTOB, includes bisphosphonates such as Zoledronate, which are thought to induce apoptosis in the MNGC fraction, preventing tumor-induced osteolysis. Indeed, "in vitro" studies have shown zolidronate to be effective in killing osteoclast-like cells. More recently, humanized monoclonal antibodies such as Denosumab targeting the RANK ligand have been employed in treatment of GCTOB in a phase II study. This is based on the notion that increased expression of RANK-ligands by stromal cells plays a role in tumor pathogenesis.
Acroosteolysis is resorption of the distal bony phalanges. Acroosteolysis has two patterns of resorption in adults: diffuse and bandlike.
The diffuse pattern of resorption has a widely diverse differential diagnosis which includes: pyknodysostosis, collagen vascular disease and vasculitis, Raynaud's neuropathy, trauma, epidermolysis bullosa, psoriasis, frostbite, sarcoidosis, hypertrophic osteoarthropathy, acromegaly, and advanced leprosy.
The bandlike pattern of resorption may be seen with polyvinyl chloride exposure and Hadju-Cheney syndrome.
A mnemonic commonly used for acro-osteolysis is PINCHFO.
Pyknodysostosis, Psoriasis,
Injury (thermal burn, frostbite),
Neuropathy (diabetes),
Collagen vascular disease (scleroderma, Raynaud's),
Hyperparathyroidism,
Familial (Hadju-Cheney, progeria),
Occupational (polyvinyl exposure),
Acroosteolysis may be associated with minimal skin changes or with ischemic skin lesions that may result in digital necrosis.
A complete radical, surgical, "en bloc" resection of the cancer, is the treatment of choice in osteosarcoma. Although about 90% of patients are able to have limb-salvage surgery, complications, particularly infection, prosthetic loosening and non-union, or local tumor recurrence may cause the need for further surgery or amputation.
Mifamurtide is used after a patient has had surgery to remove the tumor and together with chemotherapy to kill remaining cancer cells to reduce the risk of cancer recurrence. Also, the option to have rotationplasty after the tumor is taken out exists.
Patients with osteosarcoma are best managed by a medical oncologist and an orthopedic oncologist experienced in managing sarcomas. Current standard treatment is to use neoadjuvant chemotherapy (chemotherapy given before surgery) followed by surgical resection. The percentage of tumor cell necrosis (cell death) seen in the tumor after surgery gives an idea of the prognosis and also lets the oncologist know if the chemotherapy regimen should be altered after surgery.
Standard therapy is a combination of limb-salvage orthopedic surgery when possible (or amputation in some cases) and a combination of high-dose methotrexate with leucovorin rescue, intra-arterial cisplatin, adriamycin, ifosfamide with mesna, BCD (bleomycin, cyclophosphamide, dactinomycin), etoposide, and muramyl tripeptide. Rotationplasty may be used. Ifosfamide can be used as an adjuvant treatment if the necrosis rate is low.
Despite the success of chemotherapy for osteosarcoma, it has one of the lowest survival rates for pediatric cancer. The best reported 10-year survival rate is 92%; the protocol used is an aggressive intra-arterial regimen that individualizes therapy based on arteriographic response. Three-year event-free survival ranges from 50% to 75%, and five-year survival ranges from 60% to 85+% in some studies. Overall, 65–70% patients treated five years ago will be alive today. These survival rates are overall averages and vary greatly depending on the individual necrosis rate.
Filgrastim or pegfilgrastim help with white blood cell counts and neutrophil counts. Blood transfusions and epoetin alfa help with anemia. Computational analysis on a panel of Osteosarcoma cell lines identified new shared and specific therapeutic targets (proteomic and genetic) in Osteosarcoma, while phenotypes showed an increased role of tumor microenvironments.
There is no known cure for Winchester syndrome; however, there are many therapies that can aid in the treatment of symptoms. Such treatments can include medications: anti-inflammatories, muscle relaxants, and antibiotics. Many individuals will require physical therapy to promote movement and use of the limbs affected by the syndrome. Genetic counseling is typically prescribed for families to help aid in the understanding of the disease. There are a few clinical trials available to participate in. The prognosis for patients diagnosed with Winchester syndrome is positive. It has been reported that several affected individuals have lived to middle age; however,the disease is progressive and mobility will become limited towards the end of life. Eventually, the contractures will remain even with medical intervention, such as surgery.
Management of teeth with PFE can include extractions of affected teeth, followed by orthodontic space closure or placement of a prosthetic implant with a bone graft. This option can only be applied to a single tooth that is affected. If multiple teeth are affected then, a segmental osteotomy may be performed to bring the entire segment into occlusion. However, minimal success has been shown following this procedure. These teeth usually are "non-responsive" to the orthodontic force and studies have shown that ankylosis of these teeth can occur if force applied.
Gorham's disease (pronounced GOR-amz), also known as Gorham vanishing bone disease and phantom bone disease, is a very rare skeletal condition of unknown cause, characterized by the uncontrolled proliferation of distended, thin-walled vascular or lymphatic channels within bone, which leads to resorption and replacement of bone with angiomas and/or fibrosis. Current treatments are experimental only.
Treatment depends entirely on the type of hyperparathyroidism encountered.
Amputation is the initial treatment, although this alone will not prevent metastasis. Chemotherapy combined with amputation improves the survival time, but most dogs still die within a year. Surgical techniques designed to save the leg (limb-sparing procedures) do not improve the prognosis.
Some current studies indicate osteoclast inhibitors such as alendronate and pamidronate may have beneficial effects on the quality of life by reducing osteolysis, thus reducing the degree of pain, as well as the risk of pathological fractures.
In people with secondary hyperparathyroidism, the high PTH levels are an appropriate response to low calcium and treatment must be directed at the underlying cause of this (usually vitamin D deficiency or chronic kidney failure). If this is successful PTH levels should naturally return to normal levels unless PTH secretion has become autonomous (tertiary hyperparathyroidism)
Anti-inflammatories are always used when treating acute case of laminitis, and include Nonsteroidal anti-inflammatory medications (NSAIDS), DMSO, pentoxpfylline, and cryotherapy. For analgesia, NSAIDs are often the first line of defense. Phenylbutazone is commonly used for its strong effect and relatively low cost. Flunixin (Banamine), ketofen, and others are also used. Nonspecific NSAIDs such as suxibuzone, or COX-2-specific drugs, such as firocoxib and diclofenac, may be somewhat safer than phenylbutazone in preventing NSAID toxicity such as right dorsal colitis, gastric ulcers, and kidney damage. However, firocoxib provides less pain relief than phenylbutazone or flunixin. Care must be taken that pain is not totally eliminated, since this will encourage the horse to stand and move around, which increases mechanical separation of the laminae.
Pentafusion, or the administration of ketamine, lidocaine, morphine, detomidine, and acepromazine at a constant rate of infusion, may be of particular benefit to horses suffering from laminitis. Epidurals may also be used in hind-limb laminitis.
- Vasodilators
Vasodilators are often used with the goal of improving laminar blood flow. However, during the developmental phases of laminitis, vasodilation is contraindicated, either through hot water or vasodilatory drugs. Systemic acepromazine as a vasodilator with the fringe benefit of mild sedation which reduces the horse/pony's movements and thus reduces concussion on the hooves, may be beneficial after lamellar damage has occurred, although no effects on laminar blood flow with this medication have been shown. Nitroglycerine has also been applied topically in an attempt to increase blood flow, but this treatment does not appear to be an effective way to increase blood flow in the equine digit.
Incisions across the groove turned out to be ineffective. Excision of the groove followed by z-plasty could relieve pain and prevent autoamputation in Grade I and Grade II lesions. Grade III lesions are treated with disarticulating the metatarsophalangeal joint. This also relieves pain, and all patients have a useful and stable foot. Intralesional injection of corticosteroids is also helpful.
Teeth are constantly subject to both horizontal and vertical occlusal forces. With the center of rotation of the tooth acting as a fulcrum, the surface of bone adjacent to the pressured side of the tooth will undergo resorption and disappear, while the surface of bone adjacent to the tensioned side of the tooth will undergo apposition and increase in volume.
In both primary and secondary occlusal trauma, tooth mobility might develop over time, with it occurring earlier and being more prevalent in secondary occlusal trauma. To treat mobility due to primary occlusal trauma, the cause of the trauma must be eliminated. Likewise for teeth subject to secondary occlusal trauma, though these teeth may also require splinting together to the adjacent teeth so as to eliminate their mobility.
In primary occlusal trauma, the cause of the mobility was the excessive force being applied to a tooth with a normal attachment apparatus, otherwise known as a "periodontally-uninvolved tooth". The approach should be to eliminate the cause of the pain and mobility by determining the causes and removing them; the mobile tooth or teeth will soon cease exhibiting mobility. This could involve removing a high spot on a recently restored tooth, or even a high spot on a non-recently restored tooth that perhaps moved into hyperocclusion. It could also involve altering one's parafunctional habits, such as refraining from chewing on pens or biting one's fingernails. For a bruxer, treatment of the patient's primary occlusal trauma could involve selective grinding of certain interarch tooth contacts or perhaps employing a nightguard to protect the teeth from the greater than normal occlusal forces of the patient's parafunctional habit. For someone who is missing enough teeth in non-strategic positions so that the remaining teeth are forced to endure a greater "per square inch" occlusal force, treatment might include restoration with either a removable prosthesis or implant-supported crown or bridge.
In secondary occlusal trauma, simply removing the "high spots" or selective grinding of the teeth will not eliminate the problem, because the teeth are already periodontally involved. After splinting the teeth to eliminate the mobility, the cause of the mobility (in other words, the loss of clinical attachment and bone) must be managed; this is achieved through surgical periodontal procedures such as soft tissue and bone grafts, as well as restoration of edentulous areas. As with primary occlusal trauma, treatment may include either a removable prosthesis or implant-supported crown or bridge.
In terms of management, unless the syndrome results in other medical problems, treatment for endocrine dysfunction associated with pituitary malfunction is symptomatic and thus supportive;however, in some cases, surgery may be needed.
Complications to laminitis include recurrent hoof abscesses, which are sometimes secondary to pedal osteitis, seromas, and fractures to the solar margin of the coffin bone.