Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main therapeutic approach to primary hyperoxaluria is still restricted to symptomatic treatment, i.e. kidney transplantation once the disease has already reached mature or terminal stages. However, through genomics and proteomics approaches, efforts are currently being made to elucidate the kinetics of AGXT folding which has a direct bearing on its targeting to appropriate subcellular localization. Secondary hyperoxaluria is much more common than primary hyperoxaluria, and should be treated by limiting dietary oxalate and providing calcium supplementation. A child with primary hyperoxaluria was treated with a liver and kidney transplant. A favorable outcome is more likely if a kidney transplant is complemented by a liver transplant, given the disease originates in the liver.
Increase the water intake to prevent oxalates to precipitate .
Minimize dietary intake of oxalates by restricting the intake of leafy vegetables , sesame seeds , tea , cocoa , beet root , spinach , rhubarb , etc.
One of the recognized medical therapies for prevention of stones is the thiazide and thiazide-like diuretics, such as chlorthalidone or indapamide. These drugs inhibit the formation of calcium-containing stones by reducing urinary calcium excretion. Sodium restriction is necessary for clinical effect of thiazides, as sodium excess promotes calcium excretion. Thiazides work best for renal leak hypercalciuria (high urine calcium levels), a condition in which high urinary calcium levels are caused by a primary kidney defect. Thiazides are useful for treating absorptive hypercalciuria, a condition in which high urinary calcium is a result of excess absorption from the gastrointestinal tract.
For people with hyperuricosuria and calcium stones, allopurinol is one of the few treatments that have been shown to reduce kidney stone recurrences. Allopurinol interferes with the production of uric acid in the liver. The drug is also used in people with gout or hyperuricemia (high serum uric acid levels). Dosage is adjusted to maintain a reduced urinary excretion of uric acid. Serum uric acid level at or below 6 mg/100 ml) is often a therapeutic goal. Hyperuricemia is not necessary for the formation of uric acid stones; hyperuricosuria can occur in the presence of normal or even low serum uric acid. Some practitioners advocate adding allopurinol only in people in whom hyperuricosuria and hyperuricemia persist, despite the use of a urine-alkalinizing agent such as sodium bicarbonate or potassium citrate.
Increasing fluid intake to yield a urine output of greater than 2 liters a day can be advantageous for all patients with nephrocalcinosis. Patients with hypercalciuria can reduce calcium excretion by restricting animal protein, limiting sodium intake to less than 100 meq a day and being lax of potassium intake. If changing ones diet alone does not result in an suitable reduction of hypercalciuria, a thiazide diuretic can be administered in patients who do not have hypercalcemia. Citrate can increase the solubility of calcium in urine and limit the development of nephrocalcinosis. Citrate is not given to patients who have urine pH equal to or greater than 7.
The prognosis of nephrocalcinosis is determined by the underlying cause. Most cases of nephrocalcinosis do not progress to end stage renal disease, however if not reated it can lead to renal dysfunction this includes primary hyperoxaluria, hypomagnesemic hypercalciuric nephrocalcinosis and Dent's disease. Once nephrocalcinosis is found, it is unlikely to be reversed, however, partial reversal has been reported in patients who have had successful treatment of hypercalciuria and hyperoxaluria following corrective intestinal surgery.
Perhaps the key difficulty in understanding pathogenesis of primary hyperoxaluria, or more specifically, why AGXT ends up in mitochondria instead of peroxisomes, stems from AGXT's somewhat peculiar evolution. Namely, prior to its current peroxysomal 'destiny', AGXT indeed used to be bound to mitochondria. AGXT's peroxisomal targeting sequence is uniquely specific for mammalian species, suggesting the presence of additional peroxisomal targeting information elsewhere in the AGT molecule. As AGXT was redirected to peroxisomes over the course of evolution, it is plausible that its current aberrant localization to mitochondria owes to some hidden molecular signature in AGXT's spatial configuration unmasked by PH1 mutations affecting the AGXT gene.
Primary hyperoxaluria is a rare condition (autosomal recessive), resulting in increased excretion of oxalate (up to 600mg a day from normal 50mg a day), with oxalate stones being common.
Treatment includes spironolactone, a potassium-sparing diuretic that works by acting as an aldosterone antagonist.
Treatment depends entirely on the type of hyperparathyroidism encountered.
Treatment is usually surgical removal of the gland(s) containing adenomas, but medication may also be required.
People with primary hyperparathyroidism who are symptomatic benefit from surgery to remove the parathyroid tumor (parathyroid adenoma). Indications for surgery are as follows:
- Symptomatic hyperparathyroidism
- Asymptomatic hyperparathyroidism with any of the following:
- 24-hour urinary calcium > 400 mg (see Foot Note, below)
- serum calcium > 1 mg/dL above upper limit of normal
- Creatinine clearance > 30% below normal for patient's age
- Bone density > 2.5 standard deviations for below peak (i.e., T-score of -2.5)
- People age < 50
Surgery can rarely result in hypoparathyroidism.
Medications that are sometimes required include estrogen replacement therapy in postmenopausal women and bisphosphonates. Bisphosphonates may improve bone turnover.
Newer medications termed "calcimimetics" used in secondary hyperparathyroidism are now being used in primary hyperparathyroidism. Calcimimetics reduce the amount of parathyroid hormone released by the parathyroid glands. They are recommended in patients in whom surgery is inappropriate.
A number of pharmaceuticals may be used in an attempt to bring the polydipsia under control, including:
- Atypical antipsychotics, such as clozapine, olanzapine and risperidone
- Demeclocycline, a tetracycline antibiotic, which is effective due to the side effect of inducing nephrogenic diabetes insipidus. Demeclocycline is used for cases of psychogenic polydipsia, including those with nocturnal enuresis (bed-wetting). Its mechanism of action involves direct inhibition of vasopressin at the DCTs, thus reducing urine concentration.
There are a number of emerging pharmaceutical treatments for psychogenic polydipsia, although these need further investigation:
- ACE Inhibitors, such as enalapril
- Clonidine, an alpha-2 adrenergic agonist
- Irbesartan, an angiotensin II receptor antagonist
- Propranolol, a sympatholytic beta blocker
- Vasopressin receptor antagonists, such as conivaptan
- Acetazolamide, a carbonic anhydrase inhibitor
Lithium was previously used for treatment of PPD as a direct competitive ADH agonist, but is now generally avoided due to its toxic effects on the thyroid and kidneys.
It is important to note that the majority of psychotropic drugs (and a good many of other classes) can cause dry mouth as a side effect, but this is not to be confused with true polydipsia in which a dangerous drop in serum sodium will be seen.
The treatment for hyperaldosteronism depends on the underlying cause. In people with a single benign tumor (adenoma), surgical removal (adrenalectomy) may be curative. This is usually performed laparoscopically, through several very small incisions. For people with hyperplasia of both glands, successful treatment is often achieved with spironolactone or eplerenone, drugs that block the effect of aldosterone. With its antiandrogen effect, spironolactone drug therapy may have a range of effects in males, including sometimes gynecomastia. These symptoms usually do not occur with eplerenone drug therapy.
In the absence of treatment, individuals with hyperaldosteronism often have poorly controlled high blood pressure, which may be associated with increased rates of stroke, heart disease, and kidney failure. With appropriate treatment, the prognosis is excellent.
Weight loss and dietary modification are effective first-line lifestyle modification treatments for hypertriglyceridemia. For people with mildly or moderately high levels of triglycerides lifestyle changes including weight loss and dietary modification are recommended. This may include restriction of carbohydrates (specifically fructose) and fat in the diet. Medications are recommended in those with high levels of triglycerides that are not corrected with the aforementioned lifestyle modifications, with fibrates being recommended first.
The decision to treat hypertriglyceridemia with medication depends on the levels and on the presence of other risk factors for cardiovascular disease. Very high levels that would increase the risk of pancreatitis is treated with a drug from the fibrate class. Niacin and omega-3 fatty acids as well as drugs from the statin class may be used in conjunction, with statins being the main medication for moderate hypertriglyceridemia when reduction of cardiovascular risk is required.
Behavioural treatments may involve the use of a token economy to provide positive reinforcement to desirable behaviour. Furthermore, cognitive therapy techniques can be used to address the thought patterns that lead to compulsive drinking behaviour. Success has been seen in trials of this technique, with emphasis on the development of coping techniques (e.g. taking small sips of water, having ice cubes instead of drinks) in addition to challenging delusions leading to excessive drinking.
Psychogenic polydipsia often leads to institutionalisation of mentally ill patients, since it is difficult to manage in the community. Most studies of behavioural treatments occur in institutional settings and require close monitoring of the patient and a large degree of time commitment from staff.
A ciliopathy is a genetic disorder of the cellular cilia or the cilia anchoring structures, the basal bodies, or of ciliary function.
Although ciliopathies are usually considered to involve proteins that localize to motile and/or immotile (primary) cilia or centrosomes, it is possible for ciliopathies to be associated with proteins such as XPNPEP3, which localizes to mitochondria but is believed to affect ciliary function through proteolytic cleavage of ciliary proteins.
Significant advances in understanding the importance of cilia were made beginning in the mid-1990s. However, the physiological role that this organelle plays in most tissues remains elusive. Additional studies of how ciliary dysfunction can lead to such severe disease and developmental pathologies is a subject of current research.
A wide variety of symptoms are potential clinical features of ciliopathy.
- Chemosensation abnormalities, typically via ciliated epithelial cellular dysfunction.
- Defective thermosensation or mechanosensation, often via ciliated epithelial cellular dysfunction.
- Cellular motility dysfunction
- Issues with displacement of extracellular fluid
- Paracrine signal transduction abnormalities
In organisms of normal health, cilia are critical for:
- development
- homeostasis
- reproduction
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
D-Glyceric Acidemia should not be confused with L-Glyceric Acidemia (a.k.a. L-glyceric aciduria, a.k.a. primary hyperoxaluria type II ), which is associated with mutations in the "GRHPR" (encoding for the enzyme 'glyoxylate reductase/hydroxypyruvate reductase').
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
In terms of management, unless the syndrome results in other medical problems, treatment for endocrine dysfunction associated with pituitary malfunction is symptomatic and thus supportive;however, in some cases, surgery may be needed.
Treatment of ALS2-related disorders includes physical therapy and occupational therapy to promote mobility and independence and use of computer technologies and devices to facilitate writing and voice communication.
For secondary erythromelalgia, treatment of the underlying primary disorder is the most primary method of treatment. Although aspirin has been thought to reduce symptoms of erythromelalgia, it is rare to find evidence that this is effective. Mechanical cooling of the limbs by elevating them can help or managing the ambient environment frequently is often necessary constantly as flares occur due to sympathetic autonomic dysfunction of the capillaries. The pain that accompanies it is severe and treated separately (the pain is similar to CRPS, phantom limb or thalamic pain syndrome). Patients are strongly advised "not" to place the affected limbs in cold water to relieve symptoms when flaring occurs. It may seem a good idea, but it precipitates problems further down the line causing damage to the skin and ulceration often intractable due to the damaged skin. A possible reduction in skin damage may be accomplished by enclosing the flaring limb in a commonly available, thin, heat transparent, water impermeable, plastic food storage bag. The advice of a physician is advised depending on specific circumstances.
Primary erythromelalgia management is symptomatic, i.e. treating painful symptoms only. Specific management tactics include avoidance of attack triggers such as: heat, change in temperature, exercise or over exertion, alcohol and spicy foods. This list is by no means comprehensive as there are many triggers to set off a 'flaring' episode that are inexplicable. Whilst a cool environment is helpful in keeping the symptoms in control, the use of cold water baths is strongly discouraged. In pursuit of added relief sufferers can inadvertently cause tissue damage or death, i.e. necrosis. See comments at the end of the preceding paragraph regarding possible effectiveness of plastic food storage bags to avoid/reduce negative effects of submersion in cold water baths.
One clinical study has demonstrated the efficacy of IV lidocaine or oral mexilitine, though it should be noted that differences between the primary and secondary forms were not studied. Another trial has shown promise for misoprostol, while other have shown that gabapentin, venlafaxine and oral magnesium may also be effective, but no further testing was carried out as newer research superseded this combination.
Strong anecdotal evidence from EM patients shows that a combination of drugs such as duloxetine and pregabalin is an effective way of reducing the stabbing pains and burning sensation symptoms of erythromelalgia in conjunction with the appropriate analgesia. In some cases, antihistamines may give some relief. Most people with erythromelalgia never go into remission and the symptoms are ever present at some level, whilst others get worse, or the EM is eventually a symptom of another disease such as systemic scleroderma.
Some suffering with EM are prescribed ketamine topical creams as a way of managing pain on a long term basis. Feedback from some EM patients has led to reduction in usage as they believe it is only effective for short periods.
Living with erythromelalgia can result in a deterioration in quality of life resulting in the inability to function in a work place, lack of mobility, depression, and is socially alienating; much greater education of medical practitioners is needed. As with many rare diseases, many people with EM end up taking years to get a diagnosis and to receive appropriate treatment.
Research into the genetic mutations continues but there is a paucity of clinical studies focusing on living with erythromelalgia. There is much urgency within pharmaceutical companies to provide a solution to those who suffer with pain such as that with erythromelalgia.