Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is limited evidence for medication but acetazolamide "may be considered" for the treatment of central sleep apnea; it also found that zolpidem and triazolam may be considered for the treatment of central sleep apnea, but "only if the patient does not have underlying risk factors for respiratory depression". Low doses of oxygen are also used as a treatment for hypoxia but are discouraged due to side effects.
Diaphragm pacing, which involves the rhythmic application of electrical impulses to the diaphragm, has been used to treat central sleep apnea.
In April 2014 the U.S. Food and Drug Administration granted pre-market approval for use of an upper airway stimulation system in people who cannot use a continuous positive airway pressure device. The Inspire Upper Airway Stimulation system senses respiration and applies mild electrical stimulation during inspiration, which pushes the tongue slightly forward to open the airway.
Numerous treatment options are used in obstructive sleep apnea. Avoiding alcohol and smoking is recommended, as is avoiding medications that relax the central nervous system (for example, sedatives and muscle relaxants). Weight loss is recommended in those who are overweight. Continuous positive airway pressure (CPAP) and mandibular advancement devices are often used and found to be equally effective. Physical training, even without weight loss, improves sleep apnea. There is insufficient evidence to support widespread use of medications or surgery.
Evidence is insufficient to support the use of medications to treat obstructive sleep apnea. This includes the use of fluoxetine, paroxetine, acetazolamide and tryptophan among others.
The non-stimulant wake-promoting medications approved for use in narcolepsy include modafinil and armodafinil. Their pharmacology is not completely understood, but these medications "appear to influence brain chemistry that increases wakefulness." They elevate hypothalamic histamine levels, and they are known to bind to the dopamine transporter, thereby inhibiting dopamine reuptake. Modafinil can cause uncomfortable side effects, including nausea, headache, and a dry mouth for some patients, while other patients report no noticeable improvement even on relatively high dosages. They may also "interact with low-dose contraceptives, potentially reducing efficacy, although the scientific data supporting this claim is weak and rests on poorly documented anecdotes." New histamine-directed wake-promoting medications are currently under development (see Histamine-directed medications).
Atomoxetine (or reboxetine in Europe) is an adrenergic reuptake inhibitor which increases wakefulness (generally less strongly than the medications which act on dopamine) and which has been argued to have a "clear use in the therapeutic arsenal against narcolepsy and hypersomnia although undocumented by clinical trials."
Ritanserin is a serotonin antagonist that has "been shown to improve daytime alertness and subjective sleep quality in patients on their usual narcolepsy medications." It is intended as an adjunct (supplement to another main therapeutic agent), and although it is not available in the US, it is available in Europe.
Although anti-depressants, in general, have not been found to be helpful for treatment of idiopathic hypersomnia, bupropion specifically is known to have wake-promoting effects. "It is a low potency nonspecific monoamine reuptake inhibitor that also has DAT [dopamine-reuptake] inhibitory effects."
Sleep promoting medications can help by ensuring effective sleep as well as sleep at an appropriate time.
Sodium oxybate is an orphan drug which was designed specifically for the treatment of narcolepsy. It has been shown to promote deep sleep and improve daytime sleepiness (as well as cataplexy) in patients with narcolepsy; however, "its effects in those with idiopathic hypersomnia are not well characterized." Common side effects include nausea, dizziness, and hallucinations. A 2016 study by Leu-Semenescu et al. found sodium oxybate improved daytime sleepiness in idiopathic hypersomnia to the same degree as in patients with narcolepsy type 1, and the drug improved severe sleep inertia in 71% of the hypersomnia patients.
Treatment of EDS relies on identifying and treating the underlying disorder which may cure the person from the EDS. Drugs like modafinil, Armodafinil, Xyrem (sodium oxybate) oral solution, have been approved as treatment for EDS symptoms in the U.S. There is declining usage of other drugs such as methylphenidate (Ritalin), dextroamphetamine (Dexedrine), amphetamine (Adderall), lisdexamfetamine (Vyvanse), methamphetamine (Desoxyn), and pemoline (Cylert), as these psychostimulants may have several adverse effects and may lead to dependency when illicitly misused.
Research suggests that hypnosis may be helpful in alleviating some types and manifestations of sleep disorders in some patients. "Acute and chronic insomnia often respond to relaxation and hypnotherapy approaches, along with sleep hygiene instructions." Hypnotherapy has also helped with nightmares and sleep terrors. There are several reports of successful use of hypnotherapy for parasomnias specifically for head and body rocking, bedwetting and sleepwalking.
Hypnotherapy has been studied in the treatment of sleep disorders in both adults and children.
Middle-of-the-night insomnia is often treated with medication, although currently Intermezzo (zolpidem tartrate sublingual tablets) is the only Food and Drug Administration-approved medication specifically for treating MOTN awakening. Because most medications usually require 6–8 hours of sleep to avoid lingering effects the next day, these are often used every night at bedtime to prevent awakenings. Medication may not be prescribed in some cases, especially if the cause turns out to be the patient ingesting too much fluid during the day or just before they go to sleep.
Sleep restriction therapy and stimulus control therapy as described in insomnia have shown significance in treating middle of night insomnia.
Some studies have shown that zaleplon, which has a short elimination half-life, may be suitable for middle-of-the-night administration because it does not impair next day performance.
Behavioral modifications include getting at least 7–8 hours of sleep and lifestyle changes to help weight loss to help reduce or eliminate symptoms. Positional therapy also has helped many patients ease their UARS symptoms. Sleeping on one's side rather than in a supine position or using positional pillows can provide relief, but these modifications may not be sufficient to treat more severe cases. Avoiding sedatives including alcohol and narcotics can help prevent the relaxation of airway muscles, and thereby reduce the chance of their collapse. Avoiding sedatives may also help to reduce snoring.
Though no large trials have taken place which focus on the treatment of sleep paralysis, several drugs have promise in case studies. Two trials of GHB for people with narcolepsy demonstrated reductions in sleep paralysis episodes.
Medical treatment starts with education about sleep stages and the inability to move muscles during REM sleep. People should be evaluated for narcolepsy if symptoms persist. The safest treatment for sleep paralysis is for people to adopt healthier sleeping habits. However, in more serious cases tricyclic antidepressants or selective serotonin reuptake inhibitors (SSRIs) may be used. Despite the fact that these treatments are prescribed there is currently no drug that has been found to completely interrupt episodes of sleep paralysis a majority of the time.
Positive airway pressure therapy is similar to that in obstructive sleep apnea and works by stenting the airway open with pressure, thus reducing the airway resistance. Use of a CPAP mask can help ease the symptoms of UARS. Therapeutic trials have shown that using a CPAP mask with pressure between four and eight centimeters of water can help to reduce the number of arousals and improve sleepiness. CPAP masks are the most promising treatment for UARS, but effectiveness is reduced by low patient compliance.
A review of the evidence in 2012 concluded that current research is not rigorous enough to make recommendations around the use of acupuncture for insomnia. The pooled results of two trials on acupuncture showed a moderate likelihood that there may be some improvement to sleep quality for individuals with a diagnosis insomnia. This form of treatment for sleep disorders is generally studied in adults, rather than children. Further research would be needed to study the effects of acupuncture on sleep disorders in children.
In a test tube model, clarithromycin (an antibiotic approved by the FDA for the treatment of infections) was found to return the function of the GABA system to normal in patients with primary hypersomnias. Investigators therefore treated a few patients with off-label clarithromycin, and most felt their symptoms improved with this treatment. In order to help further determine whether clarithromycin is truly beneficial for the treatment of narcolepsy and idiopathic hypersomnia, a small, double-blind, randomized, controlled clinical trial was completed in 2012. "In this pilot study, clarithromycin improved subjective sleepiness in GABA-related hypersomnia. Larger trials of longer duration are warranted." In 2013, a retrospective review evaluating longer-term clarithromycin use showed efficacy in a large percentage of patients with GABA-related hypersomnia. “It is important to note that the positive effect of clarithromycin is secondary to a benzodiazepine antagonist-like effect, not its antibiotic effects, and treatment must be maintained.”
Melatonin taken an hour or so before the usual bedtime may induce sleepiness. Taken this late, it does not, of itself, affect circadian rhythms, but a decrease in exposure to light in the evening is helpful in establishing an earlier pattern. In accordance with its phase response curve (PRC), a very small dose of melatonin can also, or instead, be taken some hours earlier as an aid to resetting the body clock; it must then be small enough not to induce excessive sleepiness.
Side effects of melatonin may include sleep disturbance, nightmares, daytime sleepiness, and depression, though the current tendency to use lower doses has decreased such complaints. Large doses of melatonin can even be counterproductive: Lewy et al. provide support to "the idea that too much melatonin may spill over onto the wrong zone of the melatonin phase-response curve." The long-term effects of melatonin administration have not been examined. In some countries, the hormone is available only by prescription or not at all. In the United States and Canada, melatonin is on the shelf of most pharmacies and herbal stores. The prescription drug Rozerem (ramelteon) is a melatonin analogue that selectively binds to the melatonin MT and MT receptors and, hence, has the possibility of being effective in the treatment of DSPD.
A review by the US Department of Health and Human Services found little difference between melatonin and placebo for most primary and secondary sleep disorders. The one exception, where melatonin is effective, is the "circadian abnormality" DSPD. Another systematic review found inconsistent evidence for the efficacy of melatonin in treating DSPD in adults, and noted that it was difficult to draw conclusions about its efficacy because many recent studies on the subject were uncontrolled.
Modafinil (Provigil) is a stimulant approved in the US for treatment of shift-work sleep disorder, which shares some characteristics with DSPD. A number of clinicians prescribe it for DSPD patients, as it may improve a sleep-deprived patient's ability to function adequately during socially desirable hours. It is generally not recommended to take modafinil after noon; modafinil is a relatively long-acting drug with a half-life of 15 hours, and taking it during the later part of the day can make it harder to fall asleep at bedtime.
Vitamin B was, in the 1990s, suggested as a remedy for DSPD, and is still recommended by some sources. Several case reports were published. However, a review for the American Academy of Sleep Medicine in 2007 concluded that no benefit was seen from this treatment.
Sleeping in a more upright position seems to lessen catathrenia (as well as sleep apnea). Performing regular aerobic exercise, where steady breathing is necessary (running, cycling etc.) may lessen catathrenia. Strength exercise, on the other hand, may worsen catathrenia because of the tendency to hold one's breath while exercising. Yoga and/or meditation focused on steady and regular breathing may lessen catathrenia.
Orexin-A ( hypocretin-1) has been shown to be strongly wake-promoting in animal models, but unfortunately it does not cross the blood-brain barrier. Therefore, companies have developed orexin receptor antagonists, like suvorexant, for the treatment of insomnia. It is also likely that an orexin-A receptor agonist will be found and developed for the treatment of hypersomnia.
RBD is treatable. Medications are prescribed for RBD based on symptoms. Low doses of clonazepam is most effective with a 90% success rate. How this drug works to restore REM atonia is unclear: It is thought to suppress muscle activity, rather than directly restoring atonia. Melatonin is also effective and can also be prescribed as a more natural alternative. For those with Parkinson's and RBD, Levodopa is a popular choice. Pramipexole is another drug which can be an effective treatment option. Recent evidence has shown melatonin and clonazepam to be comparably effective in treatment of RBD with patients who received melatonin treatment reporting fewer side effects. In addition, patients with neurodegenerative diseases such as Parkinson's disease reported more favorable outcomes with melatonin treatment.
In addition to medication, it is wise to secure the sleeper's environment in preparation for episodes by removing potentially dangerous objects from the bedroom and either place a cushion round the bed or moving the mattress to the floor for added protection against injuries. Some extreme sufferers sleep in a sleeping bag zipped up to their neck, and wear mittens so they can't unzip it until they awake in the morning.
Patients are advised to maintain a normal sleep schedule, avoid sleep deprivation, and keep track of any sleepiness they may have. Treatment includes regulating neurologic symptoms and treating any other sleep disorders that might interfere with sleep. Sleep deprivation, alcohol, certain medications, and other sleep disorders can all increase RBD and should be avoided if possible.
A small study of paroxetine found some benefit. Another small trial found benefit with L -5-hydroxytryptophan (L -5-HTP).
One treatment strategy is light therapy (phototherapy), with either a full-spectrum lamp providing 10,000 lux at a specified distance from the eyes or a wearable LED device providing 350–550 lux at a shorter distance. Sunlight can also be used. The light is typically timed for 30–90 minutes at the patient's usual time of spontaneous awakening, or shortly before (but not long before), which is in accordance with the phase response curve (PRC) for light. Only experimentation, preferably with specialist help, will show how great an advance is possible and comfortable. For maintenance, some patients must continue the treatment indefinitely; some may reduce the daily treatment to 15 minutes; others may use the lamp, for example, just a few days a week or just every third week. Whether the treatment is successful is highly individual. Light therapy generally requires adding some extra time to the patient's morning routine. Patients with a family history of macular degeneration are advised to consult with an eye doctor. The use of exogenous melatonin administration (see below) in conjunction with light therapy is common.
Light restriction in the evening, sometimes called darkness therapy or scototherapy, is another treatment strategy. Just as bright light upon awakening should advance one's sleep phase, bright light in the evening and night delays it (see the PRC). It is suspected that DSPD patients may be overly sensitive to evening light. Thus, one might be advised to keep lights and computer screens dim for the last hours before bedtime and even wear amber-colored (blue-blocking) goggles. The photopigment of the retinal photosensitive ganglion cells, melanopsin, is excited by light mainly in the blue portion of the visible spectrum (absorption peaks at ~480 nanometers).
A formerly popular treatment, phase delay chronotherapy, is intended to reset the circadian clock by manipulating bedtimes. It consists of going to bed two or more hours later each day for several days until the desired bedtime is reached, and it often must be repeated every few weeks or months to maintain results. Its safety is uncertain, notably because it has led to the development of non-24-hour sleep-wake rhythm disorder, a much more severe disorder.
A modified chronotherapy is called controlled sleep deprivation with phase advance, SDPA. One stays awake one whole night and day, then goes to bed 90 minutes "earlier" than usual and maintains the new bedtime for a week. This process is repeated weekly until the desired bedtime is reached.
Earlier exercise and meal times can also help promote earlier sleep times.
One treatment for obstructive hypopnea is continuous positive airway pressure (CPAP). CPAP is a treatment in which the patient wears a mask over the nose and/or mouth. An air blower forces air through the upper airway. The air pressure is adjusted so that it is just enough to maintain the oxygen saturation levels in the blood. Another treatment is sometimes a custom fitted oral appliance. The American Academy of Sleep Medicine's protocol for obstructive sleep apnea (OSA) recommends oral appliances for those who prefer them to CPAP and have mild to moderate sleep apnea or those that do not respond to/cannot wear a CPAP. Severe cases of OSA may be treated with an oral appliance if the patient has had a trial run with a CPAP. Oral Appliances should be custom made by a dentist with training in dental sleep medicine. Mild obstructive hypopnea can often be treated by losing weight or by avoiding sleeping on one's back. Also quitting smoking, and avoiding alcohol, sedatives and hypnotics (soporifics) before sleep can be quite effective. Surgery is generally a last resort in hypopnea treatment, but is a site-specific option for the upper airway. Depending on the cause of obstruction, surgery may focus on the soft palate, the uvula, tonsils, adenoids or the tongue. There are also more complex surgeries that are performed with the adjustment of other bone structures - the mouth, nose and facial bones.
An open label non-randomized study in 30 patients found benefit from pseudoephedrine, domperidone, and the combination in the treatment of severe snoring.
In general, there are two broad classes of treatment, and the two may be combined: psychological (cognitive-behavioral) and pharmacological. In situations of acute distress such as a grief reaction, pharmacologic measures may be most appropriate. With primary insomnia, however, initial efforts should be psychologically based, including discussion of good sleep hygiene. Other specific treatments are appropriate for some of the disorders, such as ingestion of the hormone melatonin, correctly timed bright light therapy and correctly timed dark therapy or light restriction for the circadian rhythm sleep disorders. Specialists in sleep medicine are trained to diagnose and treat these disorders, though many specialize in just some of them.
The Pillar Procedure is a minimally invasive treatment for snoring and obstructive sleep apnea. In the United States, this procedure was FDA indicated in 2004. During this procedure, three to six+ dacron (the material used in permanent sutures) strips are inserted into the soft palate, using a modified syringe and local anesthetic. While the procedure was initially approved for the insertion of three "pillars" into the soft palate, it was found that there was a significant dosage response to more pillars, with appropriate candidates. As a result of this outpatient operation, which typically lasts no more than 30 minutes, the soft palate is more rigid, possibly reducing instances of sleep apnea and snoring. This procedure addresses one of the most common causes of snoring and sleep apnea — vibration or collapse of the soft palate (the soft part of the roof of the mouth). If there are other factors contributing to snoring or sleep apnea, such as conditions of the nasal airway or an enlarged tongue, it will likely need to be combined with other treatments to be more effective.