Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
A Cochrane review comparing pirfenidone with placebo, found a reduced risk of disease progression by 30%. FVC or VC was also improved, even if a mild slowing in FVC decline could be demonstrated only in one of the two CAPACITY trials. A third study, which was completed in 2014 found reduced decline in lung function and IPF disease progression. The data from the ASCEND study were also pooled with data from the two CAPACITY studies in a pre-specified analysis which showed that pirfenidone reduced the risk of death by almost 50% over one year of treatment.
Pulmonary fibrosis creates scar tissue. The scarring is permanent once it has developed. Slowing the progression and prevention depends on the underlying cause:
- Treatment options for idiopathic pulmonary fibrosis are very limited. Though research trials are ongoing, there is no evidence that any medications can significantly help this condition. Lung transplantation is the only therapeutic option available in severe cases. Since some types of lung fibrosis can respond to corticosteroids (such as prednisone) and/or other medications that suppress the body's immune system, these types of drugs are sometimes prescribed in an attempt to slow the processes that lead to fibrosis.
- Two pharmacological agents intended to prevent scarring in mild idiopathic fibrosis are pirfenidone, which reduced reductions in the 1-year rate of decline in FVC. Pirfenidone also reduced the decline in distances on the 6-minute walk test, but had no effect on respiratory symptoms. The second agent is nintedanib, which acts as antifibrotic, mediated through the inhibition of a variety of tyrosine kinase receptors (including platelet-derived growth factor, fibroblast growth factor, and vascular endothelial growth factor). A randomized clinical trial showed it reduced lung-function decline and acute exacerbations.
- Anti-inflammatory agents have only limited success in reducing the fibrotic progress. Some of the other types of fibrosis, such as non-specific interstitial pneumonia, may respond to immunosuppressive therapy such as corticosteroids. However, only a minority of patients respond to corticosteroids alone, so additional immunosuppressants, such as cyclophosphamide, azathioprine, methotrexate, penicillamine, and cyclosporine may be used. Colchicine has also been used with limited success. There are ongoing trials with newer drugs such as IFN-γ and mycophenolate mofetil..
- Hypersensitivity pneumonitis, a less severe form of pulmonary fibrosis, is prevented from becoming aggravated by avoiding contact with the causative material.
- Oxygen supplementation improves the quality of life and exercise capacity. Lung transplantation may be considered for some patients.
Hypoxia caused by pulmonary fibrosis can lead to pulmonary hypertension, which, in turn, can lead to heart failure of the right ventricle. Hypoxia can be prevented with oxygen supplementation.
Pulmonary fibrosis may also result in an increased risk for pulmonary emboli, which can be prevented by anticoagulants.
The first advance in the treatment of pulmonary alveolar proteinosis came in November 1960, when Dr. Jose Ramirez-Rivera at the Veterans' Administration Hospital in Baltimore applied repeated "segmental flooding" as a means of physically removing the accumulated alveolar material.
The standard treatment for PAP is whole-lung lavage, in which the lung is filled with sterile fluid with subsequent removal of the fluid along with the abnormal surfactant material. This is generally effective at improving PAP symptoms, often for a prolonged period of time. Since the mouse discovery noted above, the use of GM-CSF injections has also been attempted, with variable success. Lung transplantation can be performed in refractory cases.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
To date, no treatment has been proven to effectively reverse or prevent the progression of PAM. Lung transplantation is an option for end stage disease, but is typically only recommended as a last resort when quality of life is significantly impaired.
Etidronate is a bisphosphonate and can reduce the formation of calcium hydroxyapatite crystals. It has led to clinical and radiological improvements in few cases.
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
Therapeutic interventions with medium-chain triglyceride-enriched low-fat diets, intratracheal heparin, inhaled tissue plasminogen activator, and steroids have also been reported and have met with variable success.
Inhaled mucolytics: Potassium iodide and acetylcysteine inhaled therapy are often used to help the patient cough up the casts by breaking down the thick mucus formations.
Inhaled and oral steroids: If PB is associated with asthma or an infection, inhaled and oral steroids have been shown to be effective.
The U.S. FDA approved sildenafil, a selective inhibitor of cGMP specific phosphodiesterase type 5 (PDE5), for the treatment of PAH in 2005. It is marketed for PAH as Revatio. In 2009, they also approved tadalafil, another PDE5 inhibitor, marketed under the name Adcirca. PDE5 inhibitors are believed to increase pulmonary artery vasodilation, and inhibit vascular remodeling, thus lowering pulmonary arterial pressure and pulmonary vascular resistance.
Tadalafil is taken orally, as well as sildenafil, and it is rapidly absorbed (serum levels are detectable at 20 minutes). The T (biological half-life) hovers around 17.5 hours in healthy subjects. Moreover, if we consider pharmacoeconomic implications, patients that take tadalafil would pay two-thirds of the cost of sildenafil therapy. However, there are some adverse effects of this drug such as headache, diarrhea, nausea, back pain, dyspepsia, flushing and myalgia.
The dual (ET and ET) endothelin receptor antagonist bosentan was approved in 2001. Sitaxentan (Thelin) was approved for use in Canada, Australia, and the European Union, but not in the United States. In 2010, Pfizer withdrew Thelin worldwide because of fatal liver complications. A similar drug, ambrisentan is marketed as Letairis in the U.S. by Gilead Sciences.
Acute cardiogenic pulmonary edema often responds rapidly to medical treatment. Positioning upright may relieve symptoms. Loop diuretics such as furosemide or bumetanide are administered, often together with morphine or diamorphine to reduce respiratory distress. Both diuretics and morphine may have vasodilator effects, but specific vasodilators may be used (particularly intravenous glyceryl trinitrate or ISDN) provided the blood pressure is adequate.
Continuous positive airway pressure and bilevel positive airway pressure (BIPAP/NIPPV) has been demonstrated to reduce the need of mechanical ventilation in people with severe cardiogenic pulmonary edema, and may reduce mortality.
It is possible for cardiogenic pulmonary edema to occur together with cardiogenic shock, in which the cardiac output is insufficient to sustain an adequate blood pressure. This can be treated with inotropic agents or by intra-aortic balloon pump, but this is regarded as temporary treatment while the underlying cause is addressed.
The initial management of pulmonary edema, irrespective of the type or cause, is supporting vital functions. Therefore, if the level of consciousness is decreased it may be required to proceed to tracheal intubation and mechanical ventilation to prevent airway compromise. Hypoxia (abnormally low oxygen levels) may require supplementary oxygen, but if this is insufficient then again mechanical ventilation may be required to prevent complications. Treatment of the underlying cause is the next priority; pulmonary edema secondary to infection, for instance, would require the administration of appropriate antibiotics.
Acute therapy for PB is often focused on removal or facilitated expectoration of the casts. This is followed by short and long term efforts to identify and remediate the underlying condition resulting in the excessive airway leakage or inflammation that is causing the casts to form.
PB can present as a life threatening emergency when the casts obstruct the major airways resulting in acute respiratory distress. Intervention by a skilled physician experienced with foreign body removal from the lungs is essential. Evaluation by means of bronchoscopy can be difficult and time consuming and is best performed under general anesthesia.
Casts can be removed mechanically by bronchoscopy or physical therapy. High-frequency chest wall oscillation can also be used to vibrate the chest wall at a high frequency to try to loosen and thin the casts. Inhaled therapy using bronchodilators, corticosteroids or mucolytics can be used to try to disrupt the cast formation.
Recently, heavy T2-weighted MRI has revealed that occult lymphatic anomalies that represent developmental remnants or subclinical GLA are present in adults who present with expectoration of large multiantennary, branching casts. Intranodal lymphangiogram and dynamic contrast-enhanced MR lymphangiography have been used to more precisely image the leaks, and in the small number of patients who have been treated to date, embolization of the TD has been highly successful in controlling cast formation.
Cannulation of the thoracic duct followed by embolization should be considered in those patients who are shown to have leakage of lymphatic fluid into the airway.
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
Many people with this condition have no symptoms. Treatment is aimed at the health problems causing the lung problem and the complications caused by the disorder.
Fast-acting drugs for RA include aspirin and corticosteroids, which alleviate pain and reduce inflammation. Slow-acting drugs termed disease modifying antirheumatic drugs (DMARDs), include gold, methotrexate and hydroxychloroquine (Plaquenil), which promote disease remission and prevent progressive joint destruction. In patients with less severe RA, pain relievers, anti-inflammatory drugs and physical rest are sufficient to improve quality of life. In patients with joint deformity, surgery is the only alternative for recovering articular function.
Prognosis is related to the underlying disorder and the type and severity of lung disease. In severe cases, lung transplantation can be considered. This is more common in cases of bronchiolitis obliterans, pulmonary fibrosis, or pulmonary hypertension. Most complications are not fatal, but does reduce life expectancy to an estimated 5 to 10 years.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
Treatments for primary pulmonary hypertension such as prostacyclins and endothelin receptor antagonists can be fatal in people with PVOD due to the development of severe pulmonary edema, and worsening symptoms after initiation of these medications may be a clue to the diagnosis of pulmonary veno occlusive disease.
The definitive therapy is lung transplantation, though transplant rejection is always a possibility, in this measures must be taken in terms of appropriate treatment and medication.
The administration of fluid therapy in individuals with pulmonary contusion is controversial. Excessive fluid in the circulatory system (hypervolemia) can worsen hypoxia because it can cause fluid leakage from injured capillaries (pulmonary edema), which are more permeable than normal. However, low blood volume (hypovolemia) resulting from insufficient fluid has an even worse impact, potentially causing hypovolemic shock; for people who have lost large amounts of blood, fluid resuscitation is necessary. A lot of the evidence supporting the idea that fluids should be withheld from people with pulmonary contusion came from animal studies, not clinical trials with humans; human studies have had conflicting findings on whether fluid resuscitation worsens the condition. Current recommendations suggest giving enough fluid to ensure sufficient blood flow but not giving any more fluid than necessary. For people who do require large amounts of intravenous fluid, a catheter may be placed in the pulmonary artery to measure the pressure within it. Measuring pulmonary artery pressure allows the clinician to give enough fluids to prevent shock without exacerbating edema. Diuretics, drugs that increase urine output to reduce excessive fluid in the system, can be used when fluid overload does occur, as long as there is not a significant risk of shock. Furosemide, a diuretic used in the treatment of pulmonary contusion, also relaxes the smooth muscle in the veins of the lungs, thereby decreasing pulmonary venous resistance and reducing the pressure in the pulmonary capillaries.
In general, the treatment of PPH is derived from the treatment of pulmonary hypertension. The best treatment available is the combination of medical therapy and liver transplantation.
The ideal treatment for PPH management is that which can achieve pulmonary vasodilatation and smooth muscle relaxation without exacerbating systemic hypotension. Most of the therapies for PPH have been adapted from the primary pulmonary hypertension literature. Calcium channel blockers, b-blockers and nitrates have all been used – but the most potent and widely used aids are prostaglandin (and prostacyclin) analogs, phosphodiesterase inhibitors, nitric oxide and, most recently, endothelin receptor antagonists and agents capable of reversing the remodeling of pulmonary vasculature.
Inhaled nitric oxide vasodilates, decreasing pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR) without affecting systemic artery pressure because it is rapidly inactivated by hemoglobin, and improves oxygenation by redistributing pulmonary blood flow to ventilated areas of lung. Inhaled nitric oxide has been used successfully to bridge patients through liver transplantation and the immediate perioperative period, but there are two significant drawbacks: it requires intubation and cannot be used for long periods of time due to methemoglobinemia.
Prostaglandin PGE1 (Alprostadil) binds G-protein linked cell surface receptors that activate adenylate cyclase to relax vascular smooth muscle. Prostacyclin – PGI2, an arachadonic acid derived lipid mediator (Epoprostenol, Flolan, Treprostenil) – is a vasodilator and, at the same time, the most potent inhibitor of platelet aggregation. More importantly, PGI2 (and not nitrous oxide) is also associated with an improvement in splanchnic perfusion and oxygenation. Epoprostenol and ilioprost (a more stable, longer acting variation) can and does successfully bridge for patients to transplant. Epoprostenol therapy can lower PAP by 29-46% and PVR by 21-71%., Ilioprost shows no evidence of generating tolerance, increases cardiac output and improves gas exchange while lowering PAP and PVR. A subset of patients does not respond to any therapy, likely having fixed vascular anatomic changes.
Phosphodiesterase inhibitors (PDE-i) have been employed with excellent results. It has been shown to reduce mean PAP by as much as 50%, though it prolongs bleeding time by inhibiting collagen-induced platelet aggregation. Another drug, Milrinone, a Type 3 PDE-i increases vascular smooth muscle adenosine-3,5-cyclic monophosphate concentrations to cause selective pulmonary vasodilation. Also, by causing the buildup of cAMP in the myocardium, Milrinone increases contractile force, heart rate and the extent of relaxation.
The newest generation in PPH pharmacy shows great promise. Bosentan is a nonspecific endothelin-receptor antagonist capable of neutralizing the most identifiable cirrhosis associated vasoconstrictor, safely and efficaciously improving oxygenation and PVR, especially in conjunction with sildenafil. Finally, where the high pressures and pulmonary tree irritations of PPH cause a medial thickening of the vessels (smooth muscle migration and hyperplasia), one can remove the cause –control the pressure, transplant the liver – yet those morphological changes persist, sometimes necessitating lung transplantation. Imatinib, designed to treat chronic myeloid leukemia, has been shown to reverse the pulmonary remodeling associated with PPH.
Treatment aims to increase the amount of oxygen in the blood and reverse any causes of hypoxia.
- oxygen therapy
- mechanical ventilation
- Nitrous Oxide (NO·) Inhalation
- Prostaglandins (intravenous)
The therapies available to manage PPHN include the high frequency ventilation, surfactant instillation, inhaled nitric oxide, and extracorporeal membrane oxygenation. These expensive and/or invasive modalities are unavailable in the developing countries where the frequency and mortality of PPHN is likely to be much higher due to higher incidence of asphyxia and sepsis. In developing countries, the medical facilities are usually supplied with outdated equipment that was initially donated. "For people in developing countries, basic medical supplies are luxuries that are simply not available or not affordable. Doctors and nurses must constantly make do - washing and reusing "disposable" gloves and syringes, or substituting inappropriate materials such as fishing line or sewing thread for suture- or patients must go without needed care. In many countries patients must bring their own supplies, even acquire their own medicines, before treatment can be given." The limitations made it necessary to search for cheaper therapies, assuring quick effectiveness and stabilization of the patient going through a very high-risk situation. The treatments are chosen on the basis of low cost, low-tech, wide availability, and safety in the hands of non-professionals. Therefore, oral sildenafil citrate, has been the alternative way of therapy. The cost comparison shows that sildenafil is lower in cost than iNO and more readily available. There is improvement in oxygenation when oral sildenifal is administered according to the studies found in the Official Journal of the American Academy of Pediatric. The positive research results for varies studies indicates that oral sildenifal is a feasible source to improve oxygenation and survival in critical ill infants with PPHN secondary to parenchymal lung disease in centers without access to high-frequency ventilation, iNO, or ECMO.
Positive pressure ventilation, in which air is forced into the lungs, is needed when oxygenation is significantly impaired. Noninvasive positive pressure ventilation including continuous positive airway pressure (CPAP) and bi-level positive airway pressure (BiPAP), may be used to improve oxygenation and treat atelectasis: air is blown into the airways at a prescribed pressure via a face mask. Noninvasive ventilation has advantages over invasive methods because it does not carry the risk of infection that intubation does, and it allows normal coughing, swallowing, and speech. However, the technique may cause complications; it may force air into the stomach or cause aspiration of stomach contents, especially when level of consciousness is decreased.
People with signs of inadequate respiration or oxygenation may need to be intubated and mechanically ventilated. Mechanical ventilation aims to reduce pulmonary edema and increase oxygenation. Ventilation can reopen collapsed alveoli, but it is harmful for them to be repeatedly opened, and positive pressure ventilation can also damage the lung by overinflating it. Intubation is normally reserved for when respiratory problems occur, but most significant contusions do require intubation, and it may be done early in anticipation of this need. People with pulmonary contusion who are especially likely to need ventilation include those with prior severe lung disease or kidney problems; the elderly; those with a lowered level of consciousness; those with low blood oxygen or high carbon dioxide levels; and those who will undergo operations with anesthesia. Larger contusions have been correlated with a need for ventilation for longer periods of time.
Pulmonary contusion or its complications such as acute respiratory distress syndrome may cause lungs to lose compliance (stiffen), so higher pressures may be needed to give normal amounts of air and oxygenate the blood adequately. Positive end-expiratory pressure (PEEP), which delivers air at a given pressure at the end of the expiratory cycle, can reduce edema and keep alveoli from collapsing. PEEP is considered necessary with mechanical ventilation; however, if the pressure is too great it can expand the size of the contusion and injure the lung. When the compliance of the injured lung differs significantly from that of the uninjured one, the lungs can be ventilated independently with two ventilators in order to deliver air at different pressures; this helps avoid injury from overinflation while providing adequate ventilation.
Treatment of bronchiectasis includes controlling infections and bronchial secretions, relieving airway obstructions, removal of affected portions of lung by surgical removal or artery embolization and preventing complications. The prolonged use of antibiotics prevents detrimental infections and decreases hospitalizations in people with bronchiectasis, but also increases the risk of people becoming infected with drug-resistant bacteria.
Other treatment options include eliminating accumulated fluid with postural drainage and chest physiotherapy. Postural drainage techniques, aided by physiotherapists and respiratory therapists, are an important mainstay of treatment. Airway clearance techniques appear useful.
Surgery may also be used to treat localized bronchiectasis, removing obstructions that could cause progression of the disease.
Inhaled steroid therapy that is consistently adhered to can reduce sputum production and decrease airway constriction over a period of time, and help prevent progression of bronchiectasis. This is not recommended for routine use in children. One commonly used therapy is beclometasone dipropionate.
Although not approved for use in any country, mannitol dry inhalation powder, has been granted orphan drug status by the FDA for use in people with bronchiectasis and with cystic fibrosis.