Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
A Cochrane review comparing pirfenidone with placebo, found a reduced risk of disease progression by 30%. FVC or VC was also improved, even if a mild slowing in FVC decline could be demonstrated only in one of the two CAPACITY trials. A third study, which was completed in 2014 found reduced decline in lung function and IPF disease progression. The data from the ASCEND study were also pooled with data from the two CAPACITY studies in a pre-specified analysis which showed that pirfenidone reduced the risk of death by almost 50% over one year of treatment.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
Many people with this condition have no symptoms. Treatment is aimed at the health problems causing the lung problem and the complications caused by the disorder.
Fast-acting drugs for RA include aspirin and corticosteroids, which alleviate pain and reduce inflammation. Slow-acting drugs termed disease modifying antirheumatic drugs (DMARDs), include gold, methotrexate and hydroxychloroquine (Plaquenil), which promote disease remission and prevent progressive joint destruction. In patients with less severe RA, pain relievers, anti-inflammatory drugs and physical rest are sufficient to improve quality of life. In patients with joint deformity, surgery is the only alternative for recovering articular function.
Prognosis is related to the underlying disorder and the type and severity of lung disease. In severe cases, lung transplantation can be considered. This is more common in cases of bronchiolitis obliterans, pulmonary fibrosis, or pulmonary hypertension. Most complications are not fatal, but does reduce life expectancy to an estimated 5 to 10 years.
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
To properly treat a patient with tracheobronchomalacia, the subtype must be determined (primary or secondary). After the type is named, the cause must be identified, whether it is from genetics, a trauma accident, or chronic tracheal illness. If a trauma case or chronic tracheal illnesses were the cause, the first steps of treatment would be to fix or help these underlying issues. If the cause is genetic or the previous underlying issues could not be fixed, other treatments would be assessed. More severe treatments include silicone stenting to prevent tracheal constriction, surgery to strengthen or attempt to rebuild the walls, continuous positive airway pressure that has a machine blow small amounts of air into the trachea to keep it open (mainly at night), or a tracheostomy, which is surgically put into your neck that leads to your trachea to help with breathing. People with tracheobronchomalacia who do not experience symptoms do not need treatment and are often undiagnosed.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Tracheobronchomalacia or TBM is a condition characterized by flaccidity of the tracheal support cartilage which leads to tracheal collapse. This condition can also affect the bronchi. There are two forms of this rare condition: primary TB and secondary TB. Primary TB is congenital and starts as early as two years old. It is mainly linked to genetic causes. Secondary TB is acquired and starts in adulthood. It is mainly developed after an accident or chronic inflammation.
On 28 May 2013, it was reported that a cure had been developed via a 3D printed windpipe. This cure has currently saved the lives of at least 3 infants.
Treatment consists mainly of high dose antibiotics for active infections and prophylactic antibiotics for prevention of future infections. GM-CSF therapy or bone marrow transplant might be considered for severe cases. Prognosis is difficult to predict, but patients receiving treatment are generally able to survive to adulthood.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
A new investigation has identified a seemingly successful treatment for LRBA deficiency by targeting CTLA4. Abatacept, an approved drug for rheumatoid arthritis, mimics the function of CTLA4 and has found to reverse life-threatening symptoms. The study included nine patients that exhibited improved clinical status and halted inflammatory conditions with minimal infectious or autoimmune complications. The study also suggests that therapies like chloroquine or hydroxychloroquine, which inhibit lysosomal degradation, may prove to be effective, as well. Larger cohorts are required to further validate these therapeutic approaches as effective long-term treatments for this disorder.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
The mainstay of treatment consists of thymectomy and immunoglobulin replacement with IVIG (Kelesidis, 2010). Immunodeficiency does not resolve after thymectomy (Arnold, 2015). To treat the autoimmune component of the disease, immune-suppression is sometimes used and it is often challenging to determine if a patient’s symptoms are infectious or autoimmune (Arnold, 2015).
Patients should have serological testing for antibodies to toxoplasma and cytomegalovirus. If receiving a transfusion, CMV negative blood should be used in those with negative serological testing. Live vaccines should also be avoided (Kelesidis, 2010). The CDC recommends pneumococcal, meningococcal, and Hib vaccination in those with diminished humoral and cell-mediated immunity (Hamborsky, 2015).
Some have advocated treating prophylactically with TMP-SMX if CD4 counts are lower than 200 cells/mm^3, similar to AIDS patients (Kelesidis, 2010).
The treatment options for autosomal recessive polycystic kidney disease, given there is no current cure, are:
- Medications for hypertension
- Medications and/or surgery for pain
- Antibiotics for infection
- Kidney transplantation(in serious cases)
- Dialysis (if renal failure)
In secondary cases, treatment of the cause, where possible, is indicated. Additionally, treatment for HLH itself is usually required.
While optimal treatment of HLH is still being debated, current treatment regimes usually involve high dose corticosteroids, etoposide and cyclosporin. Intravenous immunoglobulin is also used. Methotrexate and vincristine have also been used. Other medications include cytokine targeted therapy.
An experimental treatment, an anti IFN-gamma monoclonal antibody tentatively named NI-0501, is in clinical trials for treating primary HLH. The FDA awarded breakthrough drug status to NI-0501 in 2016.
No treatment is available to cure or slow down the progression of aspartylglucosaminuria. Bone marrow transplants have been conducted in hope that the bone marrow will produce the missing enzyme. The results of the tests thus far have shown to be inconclusive.
Medications can be helpful for moderate or severe RP.
- Vasodilators – calcium channel blockers, such as the dihydropyridines nifedipine or amlodipine, preferably slow release preparations – are often first line treatment. They have the common side effects of headache, flushing, and ankle edema; but these are not typically of sufficient severity to require cessation of treatment. The limited evidence available shows that calcium channel blockers are only slightly effective in reducing how often the attacks happen. Peoples whose RP is secondary to erythromelalgia often cannot use vasodilators for therapy as they trigger 'flares' causing the extremities to become burning red due to there being too much blood.
- People with severe RP prone to ulceration or large artery thrombotic events may be prescribed aspirin.
- Sympatholytic agents, such as the alpha-adrenergic blocker prazosin, may provide temporary relief.
- Losartan can, and topical nitrates may, reduce the severity and frequency of attacks, and the phosphodiesterase inhibitors sildenafil and tadalafil may reduce their severity.
- Angiotensin receptor blockers or ACE inhibitors may aid blood flow to the fingers, and there is some evidence that angiotensin receptor blockers (often losartan) reduce frequency and severity of attacks, and possibly better than nifedipine.
- The prostaglandin iloprost is used to manage critical ischemia and pulmonary hypertension in RP, and the endothelin receptor antagonist bosentan is used to manage severe pulmonary hypertension and prevent finger ulcers in scleroderma.
- Statins have a protective effect on blood vessels, and SSRIs such as fluoxetine may help RP symptoms but the data is weak.
The most common treatment for XLA is an intravenous infusion of immunoglobulin (IVIg, human IgG antibodies) every 3–4 weeks, for life. IVIg is a human product extracted and pooled from thousands of blood donations. IVIg does not cure XLA but increases the patient's lifespan and quality of life, by generating passive immunity, and boosting the immune system. With treatment, the number and severity of infections is reduced. With IVIg, XLA patients may live a relatively healthy life. A patient should attempt reaching a state where his IgG blood count exceeds 800 mg/kg. The dose is based on the patient's weight and IgG blood-count.
Muscle injections of immunoglobulin (IMIg) were common before IVIg was prevalent, but are less effective and much more painful; hence, IMIg is now uncommon.Subcutaneous treatment (SCIg) was recently approved by the U.S. Food and Drug Administration (FDA), which is recommended in cases of severe adverse reactions to the IVIg treatment.
Antibiotics are another common supplementary treatment. Local antibiotic treatment (drops, lotions) are preferred over systemic treatment (pills) for long-term treatment, if possible.One of the future prospects of XLA treatment is gene therapy, which could potentially cure XLA. Gene therapy technology is still in its infancy and may cause severe complications such as cancer and even death. Moreover, the long-term success and complications of this treatment are, as yet, unknown.
Since ear infections and respiratory infections are common for children diagnosed with aspartylglucosaminuria, it is best to have regular checkups for both the ears and the respiratory tract.
Extreme sensitivity to the sun’s rays may develop; the best way to protect an individual diagnosed with aspartylglucosaminuria is to have them wear sunglasses, hats or caps to protect their eyes.
Epilepsy and insomnia can both be treated with medication.
It will be beneficial to children who are diagnosed with AGU to receive an education from a school with special teaching.
Evidence does not support the use of alternative medicine, including acupuncture and laser therapy.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
In general, there is no treatment available for CMTC, although associated abnormalities can be treated. In the case of limb asymmetry, when no functional problems are noted, treatment is not warranted, except for an elevation device for the shorter leg.
Laser therapy has not been successful in the treatment of CMTC, possibly due to the presence of many large and deep capillaries and dilated veins. Pulsed-dye laser and long-pulsed-dye laser have not yet been evaluated in CMTC, but neither argon laser therapy nor YAG laser therapy has been helpful.
When ulcers develop secondary to the congenital disease, antibiotic treatment such as oxacillin and gentamicin administered for 10 days has been prescribed. In one study, the wound grew Escherichia coli while blood cultures were negative.
The first line treatment for polymyositis is corticosteroids. Specialized exercise therapy may supplement treatment to enhance quality of life.
In terms of beta-mannosidosis treatment there is none currently, individuals that exhibit muscle weakness or seizures are treated based on the symptoms(since there's no cure)
There is no FDA-approved treatment. However, it has been shown that mild to moderate dietary restrictions slow the progression of autosomal dominant polycystic kidney disease (ADPKD).
If and when the disease progresses enough in a given case, the nephrologist or other practitioner and the patient will have to decide what form of renal replacement therapy will be used to treat end-stage kidney disease (kidney failure, typically stage 4 or 5 of chronic kidney disease).
That will either be some form of dialysis, which can be done at least two different ways at varying frequencies and durations (whether it is done at home or in the clinic depends on the method used and the patient's stability and training) and eventually, if they are eligible because of the nature and severity of their condition and if a suitable match can be found, unilateral or bilateral kidney transplantation.
A Cochrane Review study of autosomal dominant polycystic kidney disease made note of the fact that it is important at all times, while avoiding antibiotic resistance, to control infections of the cysts in the kidneys, and if affected, the liver, when needed for a certain duration to combat infection, by using, quote: "bacteriostatic and bacteriocidal drugs".