Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some evidence suggests that indomethacin administration on the first day of life to all preterm infants reduces the risk of developing a PDA and the complications associated with PDA. Indomethacin treatment in premature infants also may reduce the need for surgical intervention.
Neonates without adverse symptoms may simply be monitored as outpatients, while symptomatic PDA can be treated with both surgical and non-surgical methods. Surgically, the DA may be closed by ligation (though support in premature infants is mixed), either manually tied shut, or with intravascular coils or plugs that leads to formation of a thrombus in the DA.
Devices developed by Franz Freudenthal block the blood vessel with woven structures of nitinol wire.
Because prostaglandin E2 is responsible for keeping the DA open, NSAIDS (which can inhibit prostaglandin synthesis) such as indomethacin or a special form of ibuprofen have been used to initiate PDA closure. Recent findings from a systematic review concluded that, for closure of a PDA in preterm and/or low birth weight infants, ibuprofen is as effective as Indomethacin. It also causes fewer side effects (such as transient renal insufficiency) and reduces the risk of necrotising enterocolitis. Another recent review showed that paracetamol may be effective for closure of a PDA in preterm infants.
More recently, PDAs can be closed by percutaneous interventional method (avoiding open heart surgery). A platinum coil can be deployed via a catheter through the femoral vein or femoral artery, which induces thrombosis (coil embolization). Alternatively, a PDA occluder device , composed of nitinol mesh, is deployed from the pulmonary artery through the PDA.
A device, known as the Amplatzer muscular VSD occluder, may be used to close certain VSDs. It was initially approved in 2009. It appears to work well and be safe. The cost is also lower than having open heart surgery. The device is placed through a small incision in the groin.
The Amplatzer septal occluder was shown to have full closure of the ventricular defect within the 24 hours of placement. It has a low risk of embolism after implantation. Some tricuspid valve regurgitation was shown after the procedure that could possibly be due from the right ventricular disc. There have been some reports that the Amplatzer septal occluder may cause life-threatening erosion of the tissue inside the heart. This occurs in one percent of people implanted with the device and requires immediate open-heart surgery. This erosion occurs due to improper sizing of the device resulting with it being too large for the defect, causing rubbing of the septal tissue and erosion.
Surgical closure of an ASD involves opening up at least one atrium and closing the defect with a patch under direct visualization.
Percutaneous device closure involves the passage of a catheter into the heart through the femoral vein guided by fluoroscopy and echocardiography. An example of a percutaneous device is a device which has discs that can expand to a variety of diameters at the end of the catheter. The catheter is placed in the right femoral vein and guided into the right atrium. The catheter is guided through the atrial septal wall and one disc (left atrial) is opened and pulled into place. Once this occurs, the other disc (right atrial) is opened in place and the device is inserted into the septal wall. This type of PFO closure is more effective than drug or other medical therapies for decreasing the risk of future thromboembolism.
Percutaneous closure of an ASD is currently only indicated for the closure of secundum ASDs with a sufficient rim of tissue around the septal defect so that the closure device does not impinge upon the superior vena cava, inferior vena cava, or the tricuspid or mitral valves. The Amplatzer Septal Occluder (ASO) is commonly used to close ASDs. The ASO consists of two self-expandable round discs connected to each other with a 4-mm waist, made up of 0.004– to 0.005-inch Nitinol wire mesh filled with Dacron fabric. Implantation of the device is relatively easy. The prevalence of residual defect is low. The disadvantages are a thick profile of the device and concern related to a large amount of nitinol (a nickel-titanium compound) in the device and consequent potential for nickel toxicity.
Percutaneous closure is the method of choice in most centres.
a) Surgical closure of a Perimembranous VSD is performed on cardiopulmonary bypass with ischemic arrest. Patients are usually cooled to 28 degrees. Percutaneous Device closure of these defects is rarely performed in the United States because of the reported incidence of both early and late onset complete heart block after device closure, presumably secondary to device trauma to the AV node.
b) Surgical exposure is achieved through the right atrium. The tricuspid valve septal leaflet is retracted or incised to expose the defect margins.
c) Several patch materials are available, including native pericardium, bovine pericardium, PTFE (Gore-Tex or Impra), or Dacron.
d) Suture techniques include horizontal pledgeted mattress sutures, and running polypropylene suture.
e) Critical attention is necessary to avoid injury to the conduction system located on the left ventricular side of the interventricular septum near the papillary muscle of the conus.
f) Care is taken to avoid injury to the aortic valve with sutures.
g) Once the repair is complete, the heart is extensively deaired by venting blood through the aortic cardioplegia site, and by infusing Carbon Dioxide into the operative field to displace air.
h) Intraoperative transesophageal echocardiography is used to confirm secure closure of the VSD, normal function of the aortic and tricuspid valves, good ventricular function, and the elimination of all air from the left side of the heart.
i) The sternum, fascia and skin are closed, with potential placement of a local anesthetic infusion catheter under the fascia, to enhance postoperative pain control.
j) Multiple muscular VSDs are a challenge to close, achieving a complete closure can be aided by the use of fluorescein dye.
The mainstay of treatment for CCF is endovascular therapy. This may be transarterial (mostly in the case of direct CCF) or transvenous (most commonly in indirect CCF). Occasionally, more direct approaches, such as direct transorbital puncture of the cavernous sinus or cannulation of the draining superior orbital vein are used when conventional approaches are not possible. Spontaneous resolution of indirect fistulae has been reported but is uncommon. Staged manual compression of the ipsilateral carotid has been reported to assist with spontaneous closure in selected cases.
Direct CCF may be treated by occlusion of the affected cavernous sinus (coils, balloon, liquid agents), or by reconstruction of the damaged internal carotid artery (stent, coils or liquid agents).
Indirect CCF may be treated by occlusion of the affected cavernous sinus with coils, liquid agents or a combination of both.
Treatment is aimed at controlling symptoms and improving the interrupted blood flow to the affected area of the body.
Medications include:
- Antithrombotic medication. These are commonly given because thromboembolism is the major cause of arterial embolism. Examples are:
- Anticoagulants (such as warfarin or heparin) and antiplatelet medication (such as aspirin, ticlopidine, and clopidogrel) can prevent new clots from forming
- Thrombolytics (such as streptokinase) can dissolve clots
- Painkillers given intravenously
- Vasodilators to relax and dilate blood vessels.
Appropriate drug treatments successfully produces thrombolysis and removal of the clot in 50% to 80% of all cases.
Antithrombotic agents may be administered directly onto the clot in the vessel using a flexible catheter ("intra-arterial thrombolysis"). Intra-arterial thrombolysis reduces thromboembolic occlusion by 95% in 50% of cases, and restores adequate blood flow in 50% to 80% of cases.
Surgical procedures include:
- Arterial bypass surgery to create another source of blood supply
- Embolectomy, to remove the embolus, with various techniques available:
- Thromboaspiration
- Angioplasty with balloon catheterization with or without implanting a stent Balloon catheterization or open embolectomy surgery reduces mortality by nearly 50% and the need for limb amputation by approximately 35%.
- Embolectomy by open surgery on the artery
If extensive necrosis and gangrene has set in an arm or leg, the limb may have to be amputated. Limb amputation is in itself usually remarkably well tolerated, but is associated with a substantial mortality (~50%), primarily because of the severity of the diseases in patients where it is indicated.
Early treatment includes removing fluids from the stomach via a nasogastric tube, and providing fluids intravenously. The definitive treatment for duodenal atresia is surgery (duodenoduodenostomy), which may be performed openly or laparoscopically. The surgery is not urgent. The initial repair has a 5 percent morbidity and mortality rate.
Septal perforations are managed with a multitude of options. The treatment often depends on the severity of symptoms and the size of the perforations. Generally speaking anterior septal perforations are more bothersome and symptomatic. Posterior septal perforations, which mainly occur iatrogenically, are often managed with simple observation and are at times intended portions of skull base surgery. Septal perforations that are not bothersome can be managed with simple observation. While no septal perforation will spontaneously close, for the majority of septal perforations that are unlikely to get larger observation is an appropriate form of management. For perforations that bleed or are painful, initial management should include humidification and application of salves to the perforation edges to promote healing. Mucosalization of the perforation edges will help prevent pain and recurrent epistaxis and majority of septal perforations can be managed without surgery.
For perforations in which anosmia, or the loss of smell, and a persistent whistling are a concern the use of a sillicone septal button is a treatment option. These can be placed while the patient is awake and usually in the clinic setting. While complications of button insertion are minimal, the presence of the button can be bothersome to most patients.
For patients who desire definitive close, surgery is the only option. Prior to determining candidacy for surgical closure, the etiology of the perforation must be determined. Often this requires a biopsy of the perforation to rule out autoimmune causes. If a known cause such as cocaine is the offending agent, it must be ensured that the patient is not still using the irritant.
For those that are determined to be medically cleared for surgery, the anatomical location and size of the perforation must be determined. This is often done with a combination of a CT scan of the sinuses without contrast and an endoscopic evaluation by an Ear Nose and Throat doctor. Once dimensions are obtained the surgeon will decide if it is possible to close the perforation. Multiple approaches to access the septum have been described in the literature. While sublabial and midfacial degloving approaches have been described, the most popular today is the rhinoplasty approach. This can include both open and closed methods. The open method results in a scar on the columella, however, it allows for more visibility to the surgeon. The closed method utilizes an incision all on the inside of the nose. The concept behind closure includes bringing together the edges of mucosa on each side of the perforation with minimal tension. An interposition graft is also often used. The interposition graft provides extended stability and also structure to the area of the perforation. Classically, a graft from the scalp utilizing temporalis fascia was used. Kridel, et al., first described the usage of acellular dermis so that no further incisions are required; they reported an excellent closure rate of over 90%. Overall perforation closure rates are variable and often determined by the skill of the surgeon and technique used. Often surgeons who claim a high rate of closure choose perforations that are easier to close. An open rhinoplasty approach also allows for better access to the nose to repair any concurrent nasal deformities, such as saddle nose deformity, that occur with a septal perforation.
How well a patient does depends on the location of the clot and to what extent the clot has blocked blood flow. Arterial embolism can be serious if not treated promptly.
Without treatment, it has a 25% to 30% mortality rate. The affected area can be permanently damaged, and up to approximately 25% of cases require amputation of an affected extremity.
Arterial emboli may recur even after successful treatment.
Many approaches have been promoted as methods to reduce or reverse atheroma progression:
- eating a diet of raw fruits, vegetables, nuts, beans, berries, and grains;
- consuming foods containing omega-3 fatty acids such as fish, fish-derived supplements, as well as flax seed oil, borage oil, and other non-animal-based oils;
- abdominal fat reduction;
- aerobic exercise;
- inhibitors of cholesterol synthesis (known as statins);
- low normal blood glucose levels (glycosylated hemoglobin, also called HbA1c);
- micronutrient (vitamins, potassium, and magnesium) consumption;
- maintaining normal, or healthy, blood pressure levels;
- aspirin supplement
- cyclodextrin can solubilize cholesterol, removing it from plaques
Put simply, take steps to live a healthy, sustainable lifestyle.
The most important criterion for improving long-term prognosis is success of the initial closure. If a patient requires more than one closure their chance of continence drops off precipitously with each additional closure - at just two closures the chance of voiding continence is just 17%.
Even with successful surgery, people may have long-term complications. Some of the most common include:
- Vesicoureteral reflux
- Bladder spasm
- Bladder calculus
- Urinary tract infections
Some clinicians believe that partial stenosis of the NLD with symptomatic epiphora sometimes responds to surgical intubation of the entire lacrimal drainage system. This procedure should be performed only if the tubes can be passed easily. In complete NLD obstruction, intubation alone is not effective, and a DCR should be considered.
Modern therapy is aimed at surgical reconstruction of the bladder and genitalia. Both males and females are born with this anomaly. Treatment is similar.
In males treatments have been:
In the modern staged repair of exstrophy (MSRE) the initial step is closure of the abdominal wall, often requiring a pelvic osteotomy. This leaves the patient with penile epispadias and urinary incontinence. At approximately 2–3 years of age the patient then undergoes repair of the epispadias after testosterone stimulation. Finally, bladder neck repair usually occurs around the age of 4–5 years, though this is dependent upon a bladder with adequate capacity and, most importantly, an indication that the child is interested in becoming continent.
In the complete primary repair of exstrophy (CPRE) the bladder closure is combined with an epispadias repair, in an effort to decrease costs and morbidity. This technique has, however, led to significant loss of penile and corporal tissue, particularly in younger patients.
In females treatment has included:
Surgical reconstruction of the clitoris which is separated into two distinct bodies. Surgical reconstruction to correct the split of the mons, redefine the structure of the bladder neck and urethra. Vaginoplasty will correct the anteriorly displaced vagina. If the anus is involved, it is also repaired. Fertility remains and women who were born with bladder extrophy usually develop prolapse due to the weaker muscles of the pelvic floor.
Each child is different and it entirely depends on which sutures are fused and how it is affecting the child as to how it is treated. Some children have severe breathing issues due to shallow mid face and may require a tracheostomy. All should be treated at a specialist centre. Cranio bands are not used in the UK.
Surgery is typically used to prevent the closure of sutures of the skull from damaging the brain's development. Without surgery, blindness and mental retardation are typical outcomes. Craniofacial surgery is a discipline of both plastic surgery and oral and maxillofacial surgery (OMFS) . To move the orbits forward, craniofacial surgeons expose the skull and orbits and reshape the bone. To treat the midface deficiency, craniofacial surgeons can move the lower orbit and midface bones forward. For jaw surgery, either plastic surgeons or OMFS surgeons can perform these operations.
Crouzon patients tend to have multiple sutures involved, most specifically bilateral coronal craniosynostoses, and either open vault surgery or strip craniectomy (if child is under 6 months) can be performed. In the later scenario, a helmet is worn for several months following surgery.
Once treated for the cranial vault symptoms, Crouzon patients generally go on to live a normal lifespan.
Pancreas divisum in individuals with no symptoms does not require treatment. Treatment of those with symptoms varies and has not been well established. A surgeon may attempt a sphincterotomy by cutting the minor papilla to enlarge the opening and allow pancreatic enzymes to flow normally. During surgery, a stent may be inserted into the duct to ensure that the duct will not close causing a blockage. This surgery can cause pancreatitis in patients, or in rare cases, kidney failure and death.
An association with adenoma of the minor papilla has been reported.
A DCR is the treatment of choice for most patients with acquired NLD obstruction. Surgical indications include recurrent dacryocystitis, chronic mucoid reflux, painful distension of the lacrimal sac, and bothersome epiphora. For patients with dacryocystitis, active infection should be cleared, if possible, before DCR is performed.
Newer clinical trial results (2007), e.g. the COURAGE trial, have demonstrated that aggressively treating some of the physiologic behavioral factors that promote atheromas with "optimal medical therapy" (not opening narrowing(s), a.k.a. stenoses, per se) produced the most effective results in terms of improving human survival and quality of life for those identified as having already developed advanced cardiovascular disease with many vulnerable plaques.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
In order to prevent further cysts and infections from forming, the thyroglossal duct and all of its branches are removed from the throat and neck area. A procedure, known as the Sistrunk procedure, is considered to be the standard procedure and involves removal of portions of the hyoid bone and core tissue of the suprahyoid region. Cysts will often reoccur if the entire duct is not removed, so reoccurrence requires a wider range of tissue to be removed in a subsequent surgery.
Delaying the surgical procedure almost always leads to recurrent infections, which will continue to delay the needed treatment. The Sistrunk procedure has a reoccurrence rate of less than 5%, proving it is extremely effective at removing the majority of traces of the persistent thyroglossal duct.
The Sistrunk procedure is the surgical resection of the central portion of the hyoid bone along with a wide core of tissue from the midline area between the hyoid and foramen cecum. It involves excision not only of the cyst but also of the path's tract and branches, and removal of the central portion of the hyoid bone is indicated to ensure complete removal of the tract. The original Sistrunk papers (the "classic" procedure described in 1920, and the "modified" procedure described in 1928) are available on-line with a modern commentary.
In general, the procedure consists of three steps:
1. incision
2. resection of cyst and hyoid bone
3. drainage and closure
There are several versions of the Sistrunk procedure, including:
- "classic": excision of the center of the hyoid bone along with a thyroglossal duct cyst, removal of one-eighth inch diameter core of tongue muscle superior to the hyoid at a 45 degree angle up to the foramen cecum to include mucosa, removal of one-quarter inch of the center of the hyoid bone, closure of the cut ends of the hyoid bone, and placement of a drain.
- modified: dissection through the tongue base but not through the mucosa. The modified Sistrunk procedure is the procedure of choice in both primary and revision cases.
- hyoid cartilage division: In cases without mature ossification of the hyoid bone, the non-fused cartilage portion can be divided by monopolar Bovie electro-cauterization or scissors. There were no statistical differences between this modified Sistrunk and the conventional Sistrunk procedure.
The procedure is relatively safe. In a study of 35 pediatric patients, Maddalozzo et. al found no major complications, but did observe minor complications (6 patients presented with seroma and 4 patients with local wound infections). A more recent paper analyzed 24 research studies on different treatment complications of thyroglossal cyst, and reported a total minor complications rate of 6% for the Sistrunk operation (classical or modified) and simple cystectomy treatment modalities. The Sistrunk procedure also showed better outcomes concerning the rate of overall recurrence, i.e. has the lowest rate of recurrence.
Sistrunk procedure results in a 95% cure rate and 95–100% long-term survival.
The primary goal in surgical intervention is to allow normal cranial vault development to occur. This can be achieved by excision of the prematurely fused suture and correction of the associated skull deformities. If the synostosis goes uncorrected, the deformity will progressively worsen not only threatening the aesthetic aspect, but also the functional aspect. This is especially the case in the asymmetric conditions, such as unilateral coronal synostosis, with compromised function of the eyes and the jaw.
In addition signs of compromised neurodevelopment have been seen amongst all the synostoses, although this may also be caused by primary maldevelopment of the brain and can thus not be prevented by surgical intervention.
There are a few basic elements involved in the surgical intervention aimed at normalization of the cranial vault.
- One is minimization of blood loss, which is attempted by injection of vasoconstrictive agents (i.e. epinephrine) seven to ten minutes before scalp incision. In addition is the initiation of surgery delayed until blood products are physically present in the operating room.
- Another general agreement is the avoidance of the use of titanium plates in the fixation of the skull. The complication following this procedure is gradual movement of the titanium plates towards the brain, induced by resorption of the innermost bone layer of the skull and deposition of new bone on the outermost layer, thereby integrating the titanium plates. In some cases, the plates were even seen coming in direct contact with the brain. Absorbable plates are now used instead.
Although generally benign, the cyst must be removed if the patient exhibits difficulty in breathing or swallowing, or if the cyst is infected. Even if these symptoms are not present, the cyst may be removed to eliminate the chance of infection or development of a carcinoma, or for cosmetic reasons if there is unsightly protrusion from the neck.
Thyroid scans and thyroid function studies are ordered preoperatively; this is important to demonstrate that normally functioning thyroid tissue is in its usual area.
Surgical management options include the Sistrunk procedure, en bloc central neck dissection, suture-guided transhyoid pharyngotomy, and Koempel's supra-hyoid technique. Cystectomy is an inadequate approach.
Treatment consists primarily of supportive care including providing bowel rest by stopping enteral feeds, gastric decompression with intermittent suction, fluid repletion to correct electrolyte abnormalities and third-space losses, support for blood pressure, parenteral nutrition, and prompt antibiotic therapy. Monitoring is clinical, although serial supine and left lateral decubitus abdominal x-rays should be performed every six hours. Where the disease is not halted through medical treatment alone, or when the bowel perforates, immediate emergency surgery to resect the dead bowel is generally required, although abdominal drains may be placed in very unstable infants as a temporizing measure. Surgery may require a colostomy, which may be able to be reversed at a later time. Some children may suffer from short bowel syndrome if extensive portions of the bowel had to be removed.