Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As with all cases of hyponatremia, extreme caution must be taken to avoid the fatal consequences of rapidly correcting electrolytes (e.g. Central pontine myelinolysis, edema). Special considerations with the treatment of potomania are needed. Because this could be a chronic condition, low sodium may be normal for the patient, so an especially careful correction is warranted. It is also very important to note that due to the normal kidney function, and lack of other intrinsic or toxic cause of the electrolyte disturbance, restoration of dietary solutes will correct the electrolytes to normal serum levels. This again must be done with caution.
Options include:
- Mild and asymptomatic hyponatremia is treated with adequate solute intake (including salt and protein) and fluid restriction starting at 500 ml per day of water with adjustments based on serum sodium levels. Long-term fluid restriction of 1,200–1,800 mL/day may maintain the person in a symptom free state.
- Moderate and/or symptomatic hyponatremia is treated by raising the serum sodium level by 0.5 to 1 mmol per liter per hour for a total of 8 mmol per liter during the first day with the use of furosemide and replacing sodium and potassium losses with 0.9% saline.
- Severe hyponatremia or severe symptoms (confusion, convulsions, or coma): consider hypertonic saline (3%) 1–2 ml/kg IV in 3–4 h. Hypertonic saline may lead to a rapid dilute diuresis and fall in the serum sodium. It should not be used in those with an expanded extracellular fluid volume.
American and European guidelines come to different conclusions regarding the use of medications. In the United States they are recommended in those with SIADH, cirrhosis, or heart failure who fail limiting fluid intact. In Europe they are not generally recommended.
There is tentative evidence that vasopressin receptor antagonists (vaptans), such as conivaptan, may be slightly more effective than fluid restriction in those with high volume or normal volume hyponatremia. They should not be used in people with low volume. Their use in SIADH is unclear.
Demeclocycline, while sometimes used for SIADH, has significant side effects including potential kidney problems and sun sensitivity. In many people it has no benefit while in others it can result in overcorrection and high blood sodium levels.
Daily use of urea by mouth, while not commonly used due to the taste, has tentative evidence in SIADH. It, however, is not available in many areas of the world.
Potomania, also known as beer potomania, beer drinker's potomania, and beer drinker's hyponatremia, is a specific hypo-osmolality syndrome related to massive consumption of beer, which is poor in solutes and electrolytes. With little food or other sources of electrolytes, consumption of large amounts of beer or other dilute alcoholic drinks leads to electrolyte disturbances, where the body does not have enough of nutrients known as electrolytes, namely sodium, potassium, and magnesium. The symptoms of potomania are similar to other causes of hyponatremia and include dizziness, muscular weakness, neurological impairment and seizures, all related to hyponatremia and hypokalaemia. While the symptoms of potomania are similar to other causes of hyponatremia and acute water intoxication, it should be considered an independent clinical entity because of its often chronic nature of onset, pathophysiology, and presentation of symptoms.