Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The underlying cause must be removed. Mild hyperthemia caused by exertion on a hot day may be adequately treated through self-care measures, such as increased water consumption and resting in a cool place. Hyperthermia that results from drug exposure requires prompt cessation of that drug, and occasionally the use of other drugs as counter measures. Antipyretics (e.g., acetaminophen, aspirin, other nonsteroidal anti-inflammatory drugs) have no role in the treatment of heatstroke because antipyretics interrupt the change in the hypothalamic set point caused by pyrogens; they are not expected to work on a healthy hypothalamus that has been overloaded, as in the case of heatstroke. In this situation, antipyretics actually may be harmful in patients who develop hepatic, hematologic, and renal complications because they may aggravate bleeding tendencies.
When body temperature is significantly elevated, mechanical cooling methods are used to remove heat and to restore the body's ability to regulate its own temperatures. Passive cooling techniques, such as resting in a cool, shady area and removing clothing can be applied immediately. Active cooling methods, such as sponging the head, neck, and trunk with cool water, remove heat from the body and thereby speed the body's return to normal temperatures. Drinking water and turning a fan or dehumidifying air conditioning unit on the affected person may improve the effectiveness of the body's evaporative cooling mechanisms (sweating).
Sitting in a bathtub of tepid or cool water (immersion method) can remove a significant amount of heat in a relatively short period of time. It was once thought that immersion in very cold water is counterproductive, as it causes vasoconstriction in the skin and thereby prevents heat from escaping the body core. However, a British analysis of various studies stated: "this has never been proven experimentally. Indeed, a recent study using normal volunteers has shown that cooling rates were fastest when the coldest water was used." The analysis concluded that cool water immersion is the most-effective cooling technique for exertional heat stroke. No superior cooling method has been found for non-exertional heat stroke. Thus, aggressive ice-water immersion remains the gold standard for life-threatening heat stroke.
When the body temperature reaches about 40 °C, or if the affected person is unconscious or showing signs of confusion, hyperthermia is considered a medical emergency that requires treatment in a proper medical facility. In a hospital, more aggressive cooling measures are available, including intravenous hydration, gastric lavage with iced saline, and even hemodialysis to cool the blood.
Warm sweetened liquids can be given provided the person is alert and can swallow. Many recommend that alcohol and drinks with lots of caffeine be avoided. As most people are moderately dehydrated due to cold-induced diuresis, warmed intravenous fluids to a temperature of are often recommended.
In those without signs of life cardiopulmonary resuscitation (CPR) should be continued during active rewarming. For ventricular fibrillation or ventricular tachycardia, a single defibrillation should be attempted. People with severe hypothermia however may not respond to pacing or defibrillation. It is not known if further defibrillation should be withheld until the core temperature reaches . In Europe epinephrine is not recommended until the temperature reaches while the American Heart Association recommended up to three doses of epinephrine before is reached. Once a temperature of is reached, normal ACLS protocols should be followed.
When ambient temperature is excessive, humans and many animals cool themselves below ambient by evaporative cooling of sweat (or other aqueous liquid; saliva in dogs, for example); this helps prevent potentially fatal hyperthermia. The effectiveness of evaporative cooling depends upon humidity. Wet-bulb temperature, which takes humidity into account, or more complex calculated quantities such as wet-bulb globe temperature (WBGT), which also takes solar radiation into account, give useful indications of the degree of heat stress and are used by several agencies as the basis for heat-stress prevention guidelines. (Wet-bulb temperature is essentially the lowest skin temperature attainable by evaporative cooling at a given ambient temperature and humidity.)
A sustained wet-bulb temperature exceeding 35 °C is likely to be fatal even to fit and healthy people unclothed in the shade next to a fan; at this temperature, environmental heat gain instead of loss occurs. , wet-bulb temperatures only very rarely exceeded 30 °C anywhere, although significant global warming may change this.
In cases of heat stress caused by physical exertion, hot environments, or protective equipment, prevention or mitigation by frequent rest breaks, careful hydration, and monitoring body temperature should be attempted. However, in situations demanding one is exposed to a hot environment for a prolonged period or must wear protective equipment, a personal cooling system is required as a matter of health and safety. There is a variety of active or passive personal cooling systems; these can be categorized by their power sources and whether they are person- or vehicle-mounted.
Because of the broad variety of operating conditions, these devices must meet specific requirements concerning their rate and duration of cooling, their power source, and their adherence to health and safety regulations. Among other criteria are the user's need for physical mobility and autonomy. For example, active-liquid systems operate by chilling water and circulating it through a garment; the skin surface area is thereby cooled through conduction. This type of system has proven successful in certain military, law enforcement, and industrial applications. Bomb-disposal technicians wearing special suits to protect against improvised explosive devices (IEDs) use a small, ice-based chiller unit that is strapped to one leg; a liquid-circulating garment, usually a vest, is worn over the torso to maintain a safe core body temperature. By contrast, soldiers traveling in combat vehicles can face microclimate temperatures in excess of 65 °C and require a multiple-user, vehicle-powered cooling system with rapid connection capabilities. Requirements for hazmat teams, the medical community, and workers in heavy industry vary further.
Inhaled analgesia can help to manage pain. This type of pain management is effective but may have some side effects. Some possible adverse side effects of inhaled analgesics include vomiting, nausea and dizziness. Nitrous oxide is one gas used.
No studies demonstrate the effectiveness of hypnosis, biofeedback, sterile water injection, aromatherapy, and TENS in reducing pain during labor and delivery.
Postanesthetic shivering (PAS) is shivering after anesthesia.
The intensity of PAS may be graded using the scale described by Crossley and Mahajan:
Postanesthetic shivering is one of the leading causes of discomfort in patients recovering from general anesthesia. It usually results due to the anesthetic inhibiting the body's thermoregulatory capability, although cutaneous vasodilation (triggered by post-operative pain) may also be a causative factor. First-line treatment consists of warming the patient; more persistent/severe cases may be treated with medications such as tramadol, pethidine, clonidine and nefopam, which work by reducing the shivering threshold temperature and reducing the patient's level of discomfort. As these medications may react and/or synergize with the anesthetic agents employed during the surgery, their use is generally avoided when possible.
Treatment for hyperthermia includes reducing muscle overactivity via sedation with a benzodiazepine. More severe cases may require muscular paralysis with vecuronium, intubation, and artificial ventilation. Suxamethonium is not recommended for muscular paralysis as it may increase the risk of cardiac dysrhythmia from hyperkalemia associated with rhabdomyolysis. Antipyretic agents are not recommended as the increase in body temperature is due to muscular activity, not a hypothalamic temperature set point abnormality.
Postpartum chills is a physiological response that occurs within two hours of childbirth. It appears as uncontrollable shivering that is not under voluntary control. It is seen in many women after delivery and can be unpleasant. It lasts for a short time. It is thought to be a result of a nervous system response. It may also be related to fluid shifts and the actual strenuous work of labor. It is considered a normal response and there is no accompanying fever. If a fever does develop further assessments may reveal the presence of an infection. Treatment consists of an explanation from clinicians that the shivering is a normal response and that it only lasts for a short time. Warm blankets are given to the women and fluid replacement is encouraged. It has been described as a fairly common and normal occurrence.
After discharge to home with the baby, chills that accompany uncontrolled bleeding, shortness of breath, cold clammy skin, dizziness, heart pain, and racing heart can be a sign of shock that needs immediate medical attention. Mastitis can also cause shivering.
Specific treatment for some symptoms may be required. One of the most important treatments is the control of agitation due to the extreme possibility of injury to the person themselves or caregivers, benzodiazepines should be administered at first sign of this. Physical restraints are not recommended for agitation or delirium as they may contribute to mortality by enforcing isometric muscle contractions that are associated with severe lactic acidosis and hyperthermia. If physical restraints are necessary for severe agitation they must be rapidly replaced with pharmacological sedation. The agitation can cause a large amount of muscle breakdown. This breakdown can cause severe damage to the kidneys through a condition called rhabdomyolysis.
Intravenous oxytocin is the drug of choice for postpartum hemorrhage. Ergotamine may also be used.
Oxytocin helps the uterus to contract quickly and the contractions to last for longer. It is the first line treatment for PPH when its cause is the uterus not contracting well. A combination of syntocinon and ergometrine is commonly used as part of active management of the third stage of labour. This is called syntometrine. Syntocinon alone lowers the risk of PPH. Based on limited research available it is unclear whether syntocinon or syntometrine is most effective in preventing PPH but adverse effects are worse with syntometrine making syntocinon a more attractive option. Ergometrine also has to be kept cool and in a dark place so that it is safe to use. It does reduce the risk of PPH by improving the tone of the uterus when compared with no treatment however it has to be used with caution due to its effect raising blood pressure and causing worse after pains.
More research would be useful in determining the best doses of ergometrine, and syntocinon.
The difficulty using oxytocin is that it needs to be kept below a certain temperature which requires resources such as fridges which are not always available particularly in low-resourced settings. When oxytocin is not available, misoprostol can be used. Misoprostol does not need to be kept at a certain temperature and research into its effectiveness in reducing blood loss appears promising when compared with a placebo in a setting where it is not appropriate to use oxytocin. Misoprostol can cause unpleasant side effects such as very high body temperatures and shivering. Lower doses of misoprostol appear to be safer and cause less side effects.
Giving oxytocin in a solution of saline into the umbilical vein is a method of administering the drugs directly to the placental bed and uterus. However quality of evidence around this technique is poor and it is not recommended for routine use in the management of the third stage. More research is needed to ascertain whether this is an effective way of administering uterotonic drugs. As a way of treating a retained placenta, this method is not harmful but has not been shown to be effective.
Carbetocin compared with oxytocin produced a reduction in women who needed uterine massage and further uterotonic drugs for women having caesarean sections. There was no difference in rates of PPH in women having caesarean sections or women having vaginal deliveries when given carbetocin. Carbetocin appears to cause less adverse effects. More research is needed to find the cost effectiveness of using carbetocin.
Tranexamic acid, a medication to promote blood clotting, may also be used to reduce bleeding and blood transfusions in low-risk women, however evidence as of 2015 was not strong. A 2017 trial found that it decreased the risk of death from bleeding from 1.9% to 1.5% in women with postpartum bleeding. The benefit was greater when the medication was given within three hours.
In some countries, such as Japan, methylergometrine and other herbal remedies are given following the delivery of the placenta to prevent severe bleeding more than a day after the birth. However, there is not enough evidence to suggest that these methods are effective.
Uterine massage is a simple first line treatment as it helps the uterus to contract to reduce bleeding. Although the evidence around the effectiveness of uterine massage is inconclusive, it is common practice after the delivery of the placenta.
Delirium tremens due to alcohol withdrawal can be treated with benzodiazepines. High doses may be necessary to prevent death. Amounts given are based on the symptoms. Typically the person is kept sedated with benzodiazepines, such as diazepam, lorazepam, chlordiazepoxide, or oxazepam.
In some cases antipsychotics, such as haloperidol may also be used. Older drugs such as paraldehyde and clomethiazole were formerly the traditional treatment but have now largely been superseded by the benzodiazepines.
Acamprosate is occasionally used in addition to other treatments, and is then carried on into long term use to reduce the risk of relapse. If status epilepticus occurs it is treated in the usual way. It can also be helpful to control environmental stimuli, by providing a well-lit but relaxing environment for minimizing distress and visual hallucinations.
Alcoholic beverages can also be prescribed as a treatment for delirium tremens, but this practice is not universally supported.
High doses of thiamine often by the intravenous route is also recommended.
Muscle atrophy can be opposed by the signaling pathways which induce muscle hypertrophy, or an increase in muscle size. Therefore, one way in which not exercise induces an increase in muscle mass is to down regulate the pathways which have the opposite effect.
β-hydroxy β-methylbutyrate (HMB), a metabolite of leucine which is sold as a dietary supplement, has demonstrated efficacy in preventing the loss of muscle mass in several muscle wasting conditions in humans, particularly sarcopenia. A growing body of evidence supports the efficacy of HMB as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength in hypercatabolic disease states such as cancer cachexia; consequently, it is recommended that both the prevention and treatment of sarcopenia and muscle wasting in general include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Based upon a meta-analysis of seven randomized controlled trials that was published in 2015, HMB supplementation has efficacy as a treatment for preserving lean muscle mass in older adults. More research is needed to determine the precise effects of HMB on muscle strength and function in this age group.
Since the absence of muscle-building amino acids can contribute to muscle wasting (that which is torn down must be rebuilt with like material), amino acid therapy may be helpful for regenerating damaged or atrophied muscle tissue. The branched-chain amino acids or BCAAs (leucine, isoleucine, and valine) are critical to this process, in addition to lysine and other amino acids.
In severe cases of muscular atrophy, the use of an anabolic steroid such as methandrostenolone may be administered to patients as a potential treatment. A novel class of drugs, called SARM (selective androgen receptor modulators) are being investigated with promising results. They would have fewer side-effects, while still promoting muscle and bone tissue growth and regeneration. These claims are, however, yet to be confirmed in larger clinical trials.
One important rehabilitation tool for muscle atrophy includes the use of functional electrical stimulation to stimulate the muscles. This has seen a large amount of success in the rehabilitation of paraplegic patients.
Treatment is directed towards (1) correcting hypotension, hypovolemia, electrolyte imbalances, and metabolic acidosis; (2) improving vascular integrity, and (3) providing an immediate source of glucocorticoids. Rapid correction of hypovolemia is the first priority.
Most patients show dramatic improvement within 24 to 48 hours of appropriate fluid and glucocorticoid therapy. Over the ensuing 2 to 4 days, a gradual transition from IV fluids to oral water and food is undertaken, and maintenance mineralocorticoid and glucocorticoid therapy is initiated. Failure to make this transition smoothly should raise suspicion of insufficient glucocorticoid supplementation, concurrent endocrinopathy (e.g. hypothyroidism), or cocurrent illness (especially renal damage).
The most straightforward way to avoid nitrogen narcosis is for a diver to limit the depth of dives. Since narcosis becomes more severe as depth increases, a diver keeping to shallower depths can avoid serious narcosis. Most recreational dive schools will only certify basic divers to depths of , and at these depths narcosis does not present a significant risk. Further training is normally required for certification up to on air, and this training should include a discussion of narcosis, its effects, and cure. Some diver training agencies offer specialized training to prepare recreational divers to go to depths of , often consisting of further theory and some practice in deep dives under close supervision. Scuba organizations that train for diving beyond recreational depths, may forbid diving with gases that cause too much narcosis at depth in the average diver, and strongly encourage the use of other breathing gas mixes containing helium in place of some or all of the nitrogen in air – such as trimix and heliox – because helium has no narcotic effect. The use of these gases forms part of technical diving and requires further training and certification.
While the individual diver cannot predict exactly at what depth the onset of narcosis will occur on a given day, the first symptoms of narcosis for any given diver are often more predictable and personal. For example, one diver may have trouble with eye focus (close accommodation for middle-aged divers), another may experience feelings of euphoria, and another feelings of claustrophobia. Some divers report that they have hearing changes, and that the sound their exhaled bubbles make becomes different. Specialist training may help divers to identify these personal onset signs, which may then be used as a signal to ascend to avoid the narcosis, although severe narcosis may interfere with the judgement necessary to take preventive action.
Deep dives should be made only after a gradual training to test the individual diver's sensitivity to increasing depths, with careful supervision and logging of reactions. Diving organizations such as Global Underwater Explorers (GUE) emphasize that such sessions are for the purpose of gaining experience in recognizing the onset symptoms of narcosis for an individual , which are somewhat more repeatable than for the average group of divers. Scientific evidence does not show that a diver can train to overcome any measure of narcosis at a given depth or become tolerant of it.
Equivalent narcotic depth (END) is a commonly used way of expressing the narcotic effect of different breathing gases. The National Oceanic and Atmospheric Administration (NOAA) Diving Manual now states that oxygen and nitrogen should be considered equally narcotic. Standard tables, based on relative lipid solubilities, list conversion factors for narcotic effect of other gases. For example, hydrogen at a given pressure has a narcotic effect equivalent to nitrogen at 0.55 times that pressure, so in principle it should be usable at more than twice the depth. Argon, however, has 2.33 times the narcotic effect of nitrogen, and is a poor choice as a breathing gas for diving (it is used as a drysuit inflation gas, owing to its low thermal conductivity). Some gases have other dangerous effects when breathed at pressure; for example, high-pressure oxygen can lead to oxygen toxicity. Although helium is the least intoxicating of the breathing gases, at greater depths it can cause high pressure nervous syndrome, a still mysterious but apparently unrelated phenomenon. Inert gas narcosis is only one factor influencing the choice of gas mixture; the risks of decompression sickness and oxygen toxicity, cost, and other factors are also important.
Because of similar and additive effects, divers should avoid sedating medications and drugs, such as marijuana and alcohol before any dive. A hangover, combined with the reduced physical capacity that goes with it, makes nitrogen narcosis more likely. Experts recommend total abstinence from alcohol for at least 12 hours before diving, and longer for other drugs. Abstinence time needed for marijuana is unknown, but owing to the much longer half-life of the active agent of this drug in the body, it is likely to be longer than for alcohol.
Aggressiveness of therapy depends on the clinical status of the patient and the nature of the insufficiency (glucocorticoid, mineralocorticoid, or both). Many dogs and cats with primary adrenal insufficiency are presented in Addisonian crisis and require immediate, aggressive therapy. In contrast, secondary insufficiency often has a chronic course.
Hypoadrenocorticism is treated with fludrocortisone (trade name Florinef) or a monthly injection of Percorten-V (desoxycorticosterone pivalate, DOCP) and prednisolone or Zycortal. Routine blood work is necessary in the initial stages until a maintenance dose is established. Most of the medications used in the therapy of hypoadrenocorticism cause excessive thirst and urination. It is absolutely vital to provide fresh drinking water for a canine suffering from this disorder.
If the owner knows about an upcoming stressful situation (shows, traveling etc.), the animals generally need an increased dose of prednisone to help deal with the added stress. Avoidance of stress is important for dogs with hypoadrenocorticism. Physical illness also stresses the body and may mean that the medication(s) need to be adjusted during this time. Most dogs with hypoadrenocorticism have an excellent prognosis after proper stabilization and treatment.
Abdominal pain is often the predominant symptom in patients with acute pancreatitis and should be treated with analgesics.
Opioids are safe and effective at providing pain control in patients with acute pancreatitis. Adequate pain control requires the use of intravenous opiates, usually in the form of a patient-controlled analgesia pump. Hydromorphone or fentanyl (intravenous) may be used for pain relief in acute pancreatitis. Fentanyl is being increasingly used due to its better safety profile, especially in renal impairment. As with other opiates, fentanyl can depress respiratory function. It can be given both as a bolus as well as constant infusion.
Meperidine has been historically favored over morphine because of the belief that morphine caused an increase in sphincter of Oddi pressure. However, no clinical studies suggest that morphine can aggravate or cause pancreatitis or cholecystitis. In addition, meperidine has a short half-life and repeated doses can lead to accumulation of the metabolite normeperidine, which causes neuromuscular side effects and, rarely, seizures.
In the management of acute pancreatitis, the treatment is to stop feeding the patient, giving them nothing by mouth, giving intravenous fluids to prevent dehydration, and sufficient pain control. As the pancreas is stimulated to secrete enzymes by the presence of food in the stomach, having no food pass through the system allows the pancreas to rest. Approximately 20% of patients have a relapse of pain during acute pancreatitis. Approximately 75% of relapses occur within 48 hours of oral refeeding.
The incidence of relapse after oral refeeding may be reduced by post-pyloric enteral rather than parenteral feeding prior to oral refeeding. IMRIE scoring is also useful.
Broadspectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection.
Narcosis is potentially one of the most dangerous conditions to affect the scuba diver below about . Except for occasional amnesia of events at depth, the effects of narcosis are entirely removed on ascent and therefore pose no problem in themselves, even for repeated, chronic or acute exposure. Nevertheless, the severity of narcosis is unpredictable and it can be fatal while diving, as the result of illogical behavior in a dangerous environment.
Tests have shown that all divers are affected by nitrogen narcosis, though some experience lesser effects than others. Even though it is possible that some divers can manage better than others because of learning to cope with the subjective impairment, the underlying behavioral effects remain. These effects are particularly dangerous because a diver may feel they are not experiencing narcosis, yet still be affected by it.
Inactivity and starvation in mammals lead to atrophy of skeletal muscle, accompanied by a smaller number and size of the muscle cells as well as lower protein content. In humans, prolonged periods of immobilization, as in the cases of bed rest or astronauts flying in space, are known to result in muscle weakening and atrophy. Such consequences are also noted in small hibernating mammals like the golden-mantled ground squirrels and brown bats.
Bears are an exception to this rule; species in the family Ursidae are famous for their ability to survive unfavorable environmental conditions of low temperatures and limited nutrition availability during winter by means of hibernation. During that time, bears go through a series of physiological, morphological and behavioral changes. Their ability to maintain skeletal muscle number and size at time of disuse is of significant importance.
During hibernation, bears spend four to seven months of inactivity and anorexia without undergoing muscle atrophy and protein loss. There are a few known factors that contribute to the sustaining of muscle tissue. During the summer period, bears take advantage of the nutrition availability and accumulate muscle protein. The protein balance at time of dormancy is also maintained by lower levels of protein breakdown during the winter time. At times of immobility, muscle wasting in bears is also suppressed by a proteolytic inhibitor that is released in circulation. Another factor that contributes to the sustaining of muscle strength in hibernating bears is the occurrence of periodic voluntary contractions and involuntary contractions from shivering during torpor. The three to four daily episodes of muscle activity are responsible for the maintenance of muscle strength and responsiveness in bears during hibernation.
Most cases respond to antibiotics and prognosis is usually excellent unless there is a debilitating underlying condition. Mortality from lung abscess alone is around 5% and is improving.
Drug resistance poses a growing problem in 21st-century malaria treatment. Resistance is now common against all classes of antimalarial drugs apart from artemisinins. Treatment of resistant strains became increasingly dependent on this class of drugs. The cost of artemisinins limits their use in the developing world. Malaria strains found on the Cambodia–Thailand border are resistant to combination therapies that include artemisinins, and may, therefore, be untreatable. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years and the availability of substandard artemisinins likely drove the selection of the resistant phenotype. Resistance to artemisinin has been detected in Cambodia, Myanmar, Thailand, and Vietnam, and there has been emerging resistance in Laos.
Malaria is treated with antimalarial medications; the ones used depends on the type and severity of the disease. While medications against fever are commonly used, their effects on outcomes are not clear.
Simple or uncomplicated malaria may be treated with oral medications. The most effective treatment for "P. falciparum" infection is the use of artemisinins in combination with other antimalarials (known as artemisinin-combination therapy, or ACT), which decreases resistance to any single drug component. These additional antimalarials include: amodiaquine, lumefantrine, mefloquine or sulfadoxine/pyrimethamine. Another recommended combination is dihydroartemisinin and piperaquine. ACT is about 90% effective when used to treat uncomplicated malaria. To treat malaria during pregnancy, the WHO recommends the use of quinine plus clindamycin early in the pregnancy (1st trimester), and ACT in later stages (2nd and 3rd trimesters). In the 2000s (decade), malaria with partial resistance to artemisins emerged in Southeast Asia. Infection with "P. vivax", "P. ovale" or "P. malariae" usually do not require hospitalization. Treatment of "P. vivax" requires both treatment of blood stages (with chloroquine or ACT) and clearance of liver forms with primaquine. Treatment with tafenoquine prevents relapses after confirmed "P. vivax" malaria.
Severe and complicated malaria are almost always caused by infection with "P. falciparum". The other species usually cause only febrile disease. Severe and complicated malaria are medical emergencies since mortality rates are high (10% to 50%). Cerebral malaria is the form of severe and complicated malaria with the worst neurological symptoms.
Recommended treatment for severe malaria is the intravenous use of antimalarial drugs. For severe malaria, parenteral artesunate was superior to quinine in both children and adults. In another systematic review, artemisinin derivatives (artemether and arteether) were as efficacious as quinine in the treatment of cerebral malaria in children. Treatment of severe malaria involves supportive measures that are best done in a critical care unit. This includes the management of high fevers and the seizures that may result from it. It also includes monitoring for poor breathing effort, low blood sugar, and low blood potassium.