Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is increasing use of immunosuppressants such as mycophenolate mofetil and azathioprine because of their effectiveness. In chronic refractory cases, where immune pathogenesis has been confirmed, the off-label use of the "vinca" alkaloid and chemotherapy agent vincristine may be attempted. However, vincristine has significant side effects and its use in treating ITP must be approached with caution, especially in children.
Thrombopoietin receptor agonists are pharmaceutical agents that stimulate platelet production in the bone marrow. In this, they differ from the previously discussed agents that act by attempting to curtail platelet destruction. Two such products are currently available:
- Romiplostim (trade name Nplate) is a thrombopoiesis stimulating Fc-peptide fusion protein (peptibody) that is administered by subcutaneous injection. Designated an orphan drug in 2003 under United States law, clinical trials demonstrated romiplostim to be effective in treating chronic ITP, especially in relapsed post-splenectomy patients. Romiplostim was approved by the United States Food and Drug Administration (FDA) for long-term treatment of adult chronic ITP on August 22, 2008.
- Eltrombopag (trade name Promacta in the USA, Revolade in the EU) is an orally-administered agent with an effect similar to that of romiplostim. It too has been demonstrated to increase platelet counts and decrease bleeding in a dose-dependent manner. Developed by GlaxoSmithKline and also designated an orphan drug by the FDA, Promacta was approved by the FDA on November 20, 2008.
Side effects of thrombopoietin receptor agonists include headache, joint or muscle pain, dizziness, nausea or vomiting, and an increased risk of blood clots.
Discontinuation of heparin is critical in a case of heparin-induced thrombocytopenia (HIT). Beyond that, however, clinicians generally treat to avoid a thrombosis, often by starting patients directly on warfarin. For this reason, patients are usually treated with a direct thrombin inhibitor, such as lepirudin or argatroban, which are approved by the FDA for this use. Other blood thinners sometimes used in this setting that are not FDA-approved for treatment of HIT include bivalirudin and fondaparinux. Platelet transfusions are not routinely used to treat HIT because thrombosis, not bleeding, is the primary problem.
Treatment is guided by the severity and specific cause of the disease. Treatment focuses on eliminating the underlying problem, whether that means discontinuing drugs suspected to cause it or treating underlying sepsis. Diagnosis and treatment of serious thrombocytopenia is usually directed by a hematologist. Corticosteroids may be used to increase platelet production. Lithium carbonate or folate may also be used to stimulate platelet production in the bone marrow.
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
For people who have severe congenital protein C deficiency, protein C replacement therapies are available, which is indicated and approved for use in the United States and Europe for the prevention of purpura fulminans. Protein C replacement is often in combination with anticoagulation therapy of injectable low molecular weight heparin or oral warfarin. Before initiating warfarin therapy, a few days of therapeutic heparin may be administered to prevent warfarin skin necrosis and other progressive or recurrent thrombotic complications.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
Cordocentesis can be performed in utero to determine the platelet count of the fetus. This procedure is only performed if a "prior" pregnancy was affected by . Intrauterine transfusions can be performed during cordocentesis for primary prevention of intracerebral hemorrhage. Any administered cellular blood products must be irradiated to reduce the risk of graft-versus-host disease in the fetus. Additionally, all administered blood products should be reduced-risk ( seronegative and leukoreduced are considered essentially equivalent for the purposes of risk reduction).
If intrauterine platelet transfusions are performed, they are generally repeated weekly (platelet lifespan after transfusion is approximately 8 to 10 days). Platelets administered to the fetus must be negative for the culprit antigen (often -1a, as stated above). Many blood suppliers (such as American Red Cross and United Blood Services) have identified -1a negative donors. An alternative donor is the mother who is, of course, negative for the culprit antigen. However, she must meet general criteria for donation and platelets received from the mother must be washed to remove the offending alloantibody and irradiated to reduce the risk of graft-versus-host disease. If platlet transfusions are needed urgently, incompatible platelets may be used, with the understanding that they may be less effective and that the administration of any blood product carries risk.
The use of Intravenous immunoglobulin () during pregnancy and immediately after birth has been shown to help reduce or alleviate the effects of in infants and reduce the severity of thrombocytopenia. The most common treatment is weekly infusions at a dosage of 1 g/kg beginning at 16 to 28 weeks of pregnancy, depending on the severity of the disease in the previous affected child, and continuing until the birth of the child. In some cases this dosage is increased to 2 g/kg and/or combined with a course of prednisone depending on the exact circumstances of the case. Although this treatment has not been shown to be effective in all cases it has been shown to reduce the severity of thrombocytopenia in some. Also, it is suspected that (though not understood why) provides some added protection from intercranial haemorrhage () to the fetus. Even with treatment, the fetal platelet count may need to be monitored and platelet transfusions may still be required.
The goal of both and platelet transfusion is to avoid hemorrhage. Ultrasound monitoring to detect hemorrhage is not recommended as detection of intracranial hemorrhage generally indicates permanent brain damage (there is no intervention that can be performed to reverse the damage once it has occurred).
Before delivery, the fetal platelet count should be determined. A count of >50,000 μL is recommended for vaginal delivery and the count should be kept above 20,000 μL after birth.
Early stage sepsis-associated purpura fulminans may be reversible with quick therapeutic intervention. Treatment is mainly removing the underlying cause and degree of clotting abnormalities and with supportive treatment (antibiotics, volume expansion, tissue oxygenation, etc.). Thus, treatment includes aggressive management of the septic state.
Purpura fulminans with disseminated intravascular coagulation should be urgently treated with fresh frozen plasma (10–20 mL/kg every 8–12 hours) and/or protein C concentrate to replace pro-coagulant and anticoagulant plasma proteins that have been depleted by the disseminated intravascular coagulation process.
Protein C in plasma in the steady state has a half life of 6- to 10-hour, therefore, patients with severe protein C deficiency and presenting with purpura fulminans can be treated acutely with an initial bolus of protein C concentrate 100 IU/kg followed by 50 IU /kg every 6 hours. A total of 1 IU/kg of protein C concentrate or 1 mL/kg of fresh frozen plasma will increase the plasma concentration of protein C by 1 IU/dL. Cases with comorbid pathological bleeding may require additional transfusions with platelet concentrate (10–15 mL/kg) or cryoprecipitate (5 mL/kg).
Established soft tissue necrosis may require surgical removal of the dead tissue, fasciotomy, amputation or reconstructive surgery.
Initial treatment is with glucocorticoid corticosteroids or intravenous immunoglobulin, a procedure that is also used in ITP cases. In children, good response to a short steroid course is achieved in approximately 80 percent of cases. Although the majority of cases initially respond well to treatment, relapses are not uncommon and immunosuppressive drugs (e.g. ciclosporin, mycophenolate mofetil, vincristine and danazol) are subsequently used, or combinations of these.
The off-label use of rituximab (trade name Rituxan) has produced some good results in acute and refractory cases, although further relapse may occur within a year. Splenectomy is effective in some cases, but relapses are not uncommon.
The only prospect for a permanent cure is the high-risk option of an allogeneic hematopoietic stem cell transplantation (SCT).
Treatment of DIC is centered around treating the underlying condition. Transfusions of platelets or fresh frozen plasma can be considered in cases of significant bleeding, or those with a planned invasive procedure. The target goal of such transfusion depends on the clinical situation. Cryoprecipitate can be considered in those with a low fibrinogen level.
Treatment of thrombosis with anticoagulants such as heparin is rarely used due to the risk of bleeding.
Recombinant human activated protein C was previously recommended in those with severe sepsis and DIC, but drotrecogin alfa has been shown to confer no benefit and was withdrawn from the market in 2011.
Recombinant factor VII has been proposed as a "last resort" in those with severe hemorrhage due to obstetric or other causes, but conclusions about its use are still insufficient.
After birth, treatment depends on the severity of the condition, but could include temperature stabilization and monitoring, phototherapy, transfusion with compatible packed red blood, exchange transfusion with a blood type compatible with both the infant and the mother, sodium bicarbonate for correction of acidosis and/or assisted ventilation.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well. IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy. The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the nonogram provided by the American Academy of Pediatrics (Figure 4). Cord bilirubin >4 is also indicative of the need for exchange transfusion.
In cases of Rho(D) incompatibility, Rho(D) immunoglobulin is given to prevent sensitization. However, there is no comparable immunotherapy available for other blood group incompatibilities.
Early pregnancy
- IVIG - IVIG stands for Intravenous Immunoglobulin. It is used in cases of previous loss, high maternal titers, known aggressive antibodies, and in cases where religion prevents blood transfusion. Ivig can be more effective than IUT alone. Fetal mortality was reduced by 36% in the IVIG and IUT group than in the IUT alone group. IVIG and plasmapheresis together can reduce or eliminate the need for an IUT.
- Plasmapheresis - Plasmapheresis aims to decrease the maternal titer by direct plasma replacement. Plasmapheresis and IVIG together can even be used on women with previously hydropic fetuses and losses.
Mid to late pregnancy
- IUT - Intrauterine Transfusion (IUT) is done either by intraperitoneal transfusion (IPT) or intravenous transfusion (IVT). IVT is preferred over IPT. IUTs are only done until 35 weeks. After that, the risk of an IUT is greater than the risk from post birth transfusion.
- Steroids - Steroids are sometimes given to the mother before IUTs and early delivery to mature the fetal lungs.
- Phenobarbital - Phenobarbital is sometimes given to the mother to help mature the fetal liver and reduce hyperbilirubinemia.
- Early Delivery - Delivery can occur anytime after the age of viability. Emergency delivery due to failed IUT is possible, along with induction of labor at 35–38 weeks.
Rhesus-negative mothers who have had a pregnancy who are pregnant with a rhesus-positive infant are offered Rho(D) immune globulin (RhIG) at 28 weeks during pregnancy, at 34 weeks, and within 48 hours after delivery to prevent sensitization to the D antigen. It works by binding any fetal red blood cells with the D antigen before the mother is able to produce an immune response and form anti-D IgG. A drawback to pre-partum administration of RhIG is that it causes a positive antibody screen when the mother is tested, which can be difficult to distinguish from natural immunological responses that result in antibody production. Without Rho(D) immunoglobulin, the risk of isoimmunization is approximately 17%; with proper administration the risk is reduced to less than 0.1-0.2%.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
The antibodies in ABO HDN cause anemia due to destruction of fetal red blood cells and jaundice due to the rise in blood levels of bilirubin a by-product of hemoglobin break down. If the anemia is severe, it can be treated with a blood transfusion, however this is rarely needed. On the other hand, neonates have underdeveloped livers that are unable to process large amounts of bilirubin and a poorly developed blood-brain barrier that is unable to block bilirubin from entering the brain.This can result in kernicterus if left unchecked. If the bilirubin level is sufficiently high as to cause worry, it can be lowered via phototherapy in the first instance or an exchange transfusion if severely elevated.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well. IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy. The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the normogram provided by the American Academy of Pediatrics (Figure 4). Cord bilirubin >4 is also indicative of the need for exchange transfusion.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
PTP is rare, but usually occurs in women who have had multiple pregnancies or in people who have undergone previous transfusions. The precise mechanism leading to PTP is unknown, but it most commonly occurs in individuals whose platelets lack the HPA-1a antigen (old name: PL). The patient develops antibodies to the HPA-1a antigen leading to platelet destruction. In some cases, HPA-5b has also been implicated. It is unclear why alloantibodies attack the patient's own, as well as the introduced platelets. Probable explanation for this is that the recipient's platelet acquire the phenotype of donor's platelet by binding of the soluble antigens from the donor onto the recipient's platelet. It is usually self-limiting, but IVIG therapy is the primary treatment. Plasmapheresis is also an option for treatment.
Analgesics may be needed for the abdominal and joint pains. It is uncertain as to whether HSP needs treatment beyond controlling the symptoms. Most patients do not receive therapy because of the high spontaneous recovery rate. Steroids are generally avoided. However, if they are given early in the disease episode, the duration of symptoms may be shortened, and abdominal pain can improve significantly. Moreover, the chance of severe kidney problems may be reduced. A systematic review of randomized clinical trials did not find any evidence that steroid treatment (prednisone) is effective at decreasing the likelihood of developing long-term kidney disease.
Evidence of worsening kidney damage would normally prompt a kidney biopsy. Treatment may be indicated on the basis of the appearance of the biopsy sample; various treatments may be used, ranging from oral steroids to a combination of intravenous methylprednisolone (steroid), cyclophosphamide and dipyridamole followed by prednisone. Other regimens include steroids/azathioprine, and steroids/cyclophosphamide (with or without heparin and warfarin). Intravenous immunoglobulin (IVIG) is occasionally used.
There is no evidence from randomized clinical trials that treating children who have HSP with antiplatelet agent prevents persistent kidney disease. There is also no evidence from randomized clinical trials that treating children or adults with cyclophosphamide prevents severe kidney disease. Heparin treatment is not justified.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
Recombinant EPO (r-EPO) may be given to premature infants to stimulate red blood cell production. Brown and Keith (1999) studied two groups of 40 very low birth weight (VLBW) infants to compare the erythropoietic response between two and five times a week dosages of recombinant human erythropoietin (r-EPO) using the same dose. They established that more frequent dosing of the same weekly amount of r-EPO generated a significant and continuous increase in Hb in VLBW infants. The infants that received five dosages had 219,857 mm³ while infants that received two dosages only had 173,361 mm³. However, the response to r-EPO typically takes up to two weeks and the higher dosages lead to higher Hb. Brown and Keith (1999) study also showed responses between two dosage schedules (two times a week and five times a week). Infants were recruited for gestational age—age since conception—≤27 weeks and 28 to 30 weeks and then randomized into the two groups, each totaling 500 U/kg a week. Brown and Keith found that after two weeks of r-EPO administration, Hb counts had increased and leveled off; the infants who received r-EPO five times a week had significantly higher Hb counts. This was present at four weeks for all infants ≤30 weeks gestation and at 8 weeks for infants ≤27 weeks gestation.
To date, studies of r-EPO use in premature infants have had mixed results. Ohls et al. examined the use of early r-EPO plus iron and found no short-term benefits in two groups of infants (172 infants less than 1000 g and 118 infants 1000–1250 g). All r-EPO treated infants received 400 U/g three times a week until they reached 35 weeks gestational age. The use of r-EPO did not decrease the average number of transfusions in the infants born at less than 1000 g, or the percentage of infants in the 1000 to 1250 group. A multi-center European trial studied early versus late r-EPO in 219 infants with birth weights between 500 and 999 g. An r-EPO close of 750 U/kg/week was given to infants in both the early (1–9 weeks) and late (4–10 weeks) groups. The two r-EPO groups were compared to a control group who did not receive r-EPO. Infants in all three groups received 3 to 9 mg/kg of enteral iron. These investigators reported a slight decrease in transfusion and donor exposures in the early r-EPO group (1–9 weeks): 13% early, 11% late and 4% control group. It is likely that only a carefully selected subpopulation of infants may benefit from its use. Contrary to what just said, Bain and Blackburn (2004) also state in another study the use of r-EPO does not appear to have a significant effect on reducing the numbers of early transfusions in most infants, but may be useful to reduce numbers of late transfusion in extremely low-birth-weight infants. A British task force to establish transfusion guidelines for neonates and young children and to help try to explain this confusion recently concluded that “the optimal dose, timing, and nutritional support required during EPO treatment has yet to be defined and currently the routine use of EPO in this patient population is not recommended as similar reduction in blood use can probably be achieved with appropriate transfusion protocols.”
Other strategies involve the reduction of blood loss during phlebotomy.
Another treatment used is therapeutic strategies. These strategies are aimed at reducing transfusions have assessed the use of strict blood transfusions guidelines and EPO therapy, but reduction of blood loss is most important. For extremely low birth weight infants, laboratory blood testing using bedside devices offers a unique opportunity to reduce blood transfusions. This practice has been referred to as point-of-care testing. Use of these kind of devices to measure the most common ordered blood tests could significantly decrease phlebotomy loss and lead to a reduction in the need for blood transfusions among critically ill premature neonates. A study was done by Adams, Benitz, Geaghan, Kumar, Madan and Widness (2005) to test this theory by conducting a retrospective chart review on all inborn infants <1000g admitted to the NICU during two separate years. Conventional bench top laboratory analysis during the first year was done using Radiometer Blood Gas and Electrolyte Analyzer. Bedside blood gas analysis during the second year was performed using a point-of-care analyzer. An estimated blood loss in the two groups was determined based on the number of specific blood tests on individual infants. The study found that there was an estimated 30% reduction in the total volume of blood removed for the blood tests. This study concluded that there is modern technology that can be used instead of blood transfusions and r-EPO.
Post-transfusion purpura (PTP) is an adverse reaction to a blood transfusion or platelet transfusion that occurs when the body produces alloantibodies to the introduced platelets' antigens. These alloantibodies destroy the patient's platelets leading to thrombocytopenia, a rapid decline in platelet count. PTP usually presents 5–12 days after transfusion, and is a potentially fatal condition.
Diagnosis is done by the help of symptoms and only blood count abnormality is thrombocytopenia.
By tradition, the term idiopathic thrombocytopenic purpura is used when the cause is idiopathic. However, most cases are now considered to be immune-mediated.
Another form is thrombotic thrombocytopenic purpura.